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Abstract

The Development of Representation-Based Methods for Knowledge Engineering of

Computer Networks

by

Tyler Munger

Enterprises that provide technical support for network engineering products and

technologies are continuously accumulating terabytes of unstructured customer data in

the form of service requests, device logs, bug reports, and network configurations. A

large body of work in knowledge engineering (artificial intelligence, machine learning,

data mining, and information retrieval) has been developed and applied within the

context of important application areas such as expert systems, search engines, and

more recently recommender systems. However, a relatively small body of knowledge

engineering (KE) work has addressed methods and application of KE to the design

and development of engineering systems and products. Furthermore, a relatively small

proportion of the KE research applied to engineering systems has addressed all of the

following three issues: 1) the structuring of the engineering subject-matter domains to

which the theory is applied, 2) the proper integration of this domain structure with

analytical KE methods, and 3) the KE software necessary to support the design and

development of engineering systems.

This thesis addresses the theories, application, and implementation of knowledge en-

gineering methods for using this collected data to improve product design, development,

and delivery. To address the aforementioned three issues we have formulated a cognitive

science-based representation framework for problem-solving, consisting of five sequential

layers, or stages, which enables integration of diverse domains such as machine learn-

ing, product design and development, software engineering, and the statistical design of

experiments.

xiv



www.manaraa.com

To demonstrate and test our theories we have applied this representation-based

framework, called the Integrated Meta-Representational Model (IMRM), to solve three

important product design, development, and delivery problems related to computer net-

works. The first problem involved combining computer network domain knowledge with

analytical methods from data mining and time-series analysis in order to monitor and

assess the quality of a computer network security product. The second problem involved

predicting whether or not an incoming customer support case should be escalated in

priority in order to be resolved in a timely and cost-effective manner. For this problem

we used a statistical Design of Experiments approach to optimizing the machine learn-

ing model for predicting whether or not a service request needs to be escalated. The

third problem involved the development of a Knowledge Engineering Software Product

for supporting the extraction of problem-solution pairs from customer service requests

in order to create new computer network products and services. The work concludes by

indicating how the Integrated Meta-Representational Model can be used to solve even

more complex problems, involving the integration of all the core activities in engineering:

design, analysis, experimentation, and prototyping/manufacturing.
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1 Introduction

A large body of work in knowledge engineering (artificial intelligence, machine learning,

data mining, and information retrieval) has been developed and applied within the

context of important application areas such as expert systems, search engines, and more

recently recommender systems. However, a relatively small body of work has addressed

the development of methods and tools for the application of knowledge engineering to

the design and development of engineering systems and products. For the application of

knowledge engineering to a particular engineering domain, such as computer networks,

to yield meaningful and reliable (robust) results, the subject-matter of the domain most

first be structured for the purposes of extracting knowledge.

Furthermore, only a relatively small proportion of the knowledge engineering research

applied to engineering systems has addressed all of the following three areas: 1) the a

priori structuring of the engineering subject matter domains to which the theory is ap-

plied, 2) the integration of this domain structure with analytical knowledge engineering

methods, and 3) the design and development of software products to automate processes

used by engineering teams in the design and development of engineering systems.

This thesis addresses the theories, implementation, and application of knowledge en-

gineering methods to improve product design, development, and delivery in engineering

domains. The purpose of this chapter is to introduce knowledge engineering within this

context, outline some of the research issues involved, and describe our key contributions

to these research issues.

To this end, the chapter is organized into four parts as follows. Section 1.1 provides

a brief background section that motivates knowledge engineering in the product design,

1
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development, and delivery context, and differentiates it from existing work in data min-

ing and machine learning. Section 1.2 highlights an important gap in existing knowledge

engineering work, and develops the research issues related to applying knowledge engi-

neering methods in complex technical domains. Following from these research issues,

Section 1.3 summarizes the key theoretical and applied research contributions of the

work. Section 1.4 concludes the chapter by outlining the overall structure of the thesis.

1.1 Background

Most enterprises, technology and otherwise, are routinely collecting massive amounts of

information from customers. In general, the customer data being collected falls into two

distinct categories or groups: structured data resulting from customer transactions such

as sales, and unstructured data from customer interactions such as customer support.

The extraction of knowledge from customer transaction data is a well-defined prob-

lem that has been studied extensively by the data mining community. It is relatively

straightforward to solve these problems by directly applying standard data mining meth-

ods and tools. For example, consider the problem of mining customer sales data to

determine the sets of products that customers frequently purchase together. Since sales

data is usually recorded in a structured fixed-field format, meaningful patterns can typ-

ically be directly extracted using well-known techniques such as association analysis

[Witten and Frank, 2005].

The extraction of knowledge from customer interaction data, however, is a far more

complex and difficult task [Spangler and Kreulen, 2008]. Directly applying data mining

methods rarely produces results that are applicable to enterprise business/technology

activities such as product development. For example, consider the extraction of fre-

quently encountered customer product problems from resolved technical support cases.

In this case, the direct application of data mining techniques such as cluster analy-

2
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sis [Witten and Frank, 2005] is unlikely to produce results that are meaningful in the

context of identifying common product problems.

The efficient extraction of knowledge from customer interaction data is of great in-

terest to nearly all enterprises, technology and otherwise, as the collected data contains

knowledge and insights that enable the design, development, and delivery of smarter,

more customer-centric, products and services. Some examples of the potential applica-

tion of knowledge engineering within the context of product design, development, and

delivery (support) are as follows:

1. Product Design: Determining what functions and features need to be included

in the next generation of products.

2. Product Development: Determining key product failure modes that need to

be resolved during product development.

3. Product Delivery: Automating the detection and resolution of product related

problems in service.

The knowledge engineering problem of extracting meaningful knowledge from cus-

tomer interaction data is a complex multi-disciplinary problem with the following char-

acteristics:

1. A complete and comprehensive solution to the problem requires the use of several

subject-matter domains.

2. Each domain has its own representational language.

3. Each domain has, in general, its own unique set of methods and tools for addressing

and resolving problems.

4. The methods and tools from the diverse subject-matter domains need to be inte-

grated in order to solve the specified problem.
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The combination of these characteristics requires a framework to organize and struc-

ture the domains involved in knowledge engineering, as well as the diverse methods and

tools from these domains necessary for the problem in hand.

1.2 Research Issues

This thesis addresses two distinct problems. The first problem is the development of the

framework discussed in the previous section for selecting and integrating the methods

and tools from the multiple engineering domains. The theoretical research issues related

to the development of this framework are listed below:

Theoretical Research Issue 1: What engineering subject matter domains,

methods and tools are necessary when addressing a particular knowledge engi-

neering problem?

Theoretical Research Issue 2: How should the necessary methods and tools

be integrated into a comprehensive end-to-end process methodology for solving

the knowledge engineering problem under consideration?

The second problem addressed in this thesis is the application of the developed

framework to solve complex real-world knowledge engineering problems. This problem

involves the following applied research issues:

Applied Research Issue 1: How should the necessary domain knowledge for

solving a particular knowledge engineering problem be collected and structured in

order to obtain meaningful and reliable results?

Applied Research Issue 2: How should the settings or parameters for the

machine learning process be selected in order to produce the best predictive model

with respect to the knowledge engineering problem under consideration?
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Applied Research Issue 3: How should the appropriate software necessary

for automating the processes used by engineers to solve a particular knowledge

engineering problem be designed, developed, and implemented?

1.3 Research Contributions

This work makes two key sets of contributions to the knowledge engineering research

issues described in the previous section. The first set of contributions are related to

the theoretical framework that we have developed for layering any complex knowledge

engineering problem so that the correct set of methods and tools can be applied to its

solution. The second set of research contributions are related to the application of this

theoretical framework to solve three important knowledge engineering problems in the

computer networking domain.

1.3.1 Theory: Integrated Meta-Representational Model

To address the aforementioned research issues we have formulated a cognitive-science

based framework, called the Integrated Meta-Representational Model (IMRM), consist-

ing of five inter-related-functional problem-solving layers. This functional layering of

a problem provides an abstract “subject-matter domain-neutral model” that then en-

ables the selection of the appropriate subject matter domains and associated methods

and tools for each layer of the representation. We apply the IMRM to organize and

coordinate different activities involved in applying knowledge engineering to the design

and development of engineering systems and products.

The integrated representational structure of the IMRM allowed us to answer the

theoretical research issues 1 and 2:

Theoretical Research Issue 1: What engineering subject matter do-
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mains, methods and tools are necessary when addressing a particular

knowledge engineering problem?

The functional layering of the IMRM enables the selection of the necessary meth-

ods and tools from the domains of machine learning, product design and develop-

ment, statistical design of experiments, and software engineering. A summary of

the methods and techniques from the domains used in this works is provided in

Chapter 2.

Theoretical Research Issue 2: How should the necessary methods and

tools be integrated into a comprehensive end-to-end process method-

ology for solving the knowledge engineering problem under considera-

tion?

Multi-disciplinary development is notably difficult because each subject matter

domain has its own unique representational language, methods, tools, and tech-

niques. Furthermore, these diverse methods and tools need to be properly in-

tegrated in order to provide a comprehensive and complete solution to the given

problem. The IMRM provides a common functional representation-based language

necessary for integrating methods across multiple domains into a unified develop-

ment process capable of producing comprehensive solutions to the problem. A

description of this integration is discussed in Chapter 3.

1.3.2 Representation-Based Models for Knowledge Engineering in the Com-

puter Networking Domain

The second set of contributions are related to the application of the Integrated Meta-

Representational Model (IMRM) to the three important real-world knowledge engineer-

ing problems in the computer network services application domain.

1. Product Quality Monitoring and Assessment
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We applied the IMRM to the knowledge engineering problem of monitoring and

assessing the quality of a specific computer network security device using his-

torical customer service request data. In this problem we show how the IMRM

enables the a priori structuring of the domain knowledge for a particular problem,

in this case the key failure modes for the network security device, and the subse-

quent integration of this domain knowledge with analytical knowledge engineering

methods. This problem, addressed in Chapter 4, is related to Applied Research

Issue 1.

2. Predicting Service Request Escalation

We applied the IMRM to the knowledge engineering problem of predicting which

customer service requests would need to be escalated in priority. In this problem

we show how the IMRM enables the analytical knowledge engineering method, in

this case the machine learning model for predicting escalation, to be optimized or

tuned in order to produce the best results for the problem under consideration.

This problem, addressed in Chapter 5, is related to Applied Research Issue 2.

3. Development of Knowledge Engineering Software Products

We applied the IMRM to the knowledge engineering problem of extracting problem-

solution pairs from customer service requests in order to improve the development

of network products and services. In this problem we show how the IMRM enables

the rapid development of high-quality knowledge engineering software automation,

in this case a knowledge engineering software product to improve the productiv-

ity of the engineering team. This problem, addressed in Chapter 6, is related to

Applied Research Issue 3.

The representation-based models developed for each of these problems, described

below, enables us to answer the following applied research issues:

Applied Research Issue 1: How should the necessary domain knowledge
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for solving a particular knowledge engineering problem be collected and

structured in a coherent, goal-oriented manner?

There are two distinct types of domain knowledge that are often necessary in or-

der to solve product design, development, and delivery problems: organizational

knowledge and engineering knowledge. Organizational knowledge includes orga-

nizational factors and work-processes. Engineering knowledge, on the other-hand,

is based around engineering issues such as product functionality, product sub-

systems, and product failure modes

In order to properly capture and structure the organizational knowledge we have

drawn upon two modeling tools from the well-known CommonKADS methodology

[Schreiber, 1994] for developing expert systems: the organization model to provide

a concise high-level view of organizational context, i.e. people, processes, and

resources, and the Agent / Task Model to provide a single integrated model for

representing work processes using tasks, agents, and the relationships between

agents and tasks. A detailed description of the CommonKADS methodology is

provided in Chapter 6.

In order to represent the engineering domain knowledge in product design, devel-

opment, and delivery problems we have drawn upon three well-known methods

from engineering design. The Function Structure is an abstract implementation

or solution neutral representation of the functions and sub-functions of a product.

The Functional Analysis System Technique (FAST) [Fox, 1993] relates product

sub-functions to the product sub-systems that implement these sub-functions.

The Failure Modes and Effects Analysis (FMEA) [Fox, 1993] identifies the poten-

tial types of failure modes for products sub-systems, the effect of these failures

on product functionality, and prescribes corrective actions that should taken. A

detailed description of the FAST and FMEA methods is provided in Chapter 4.

Applied Research Issue 2: How should the settings or parameters for
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the machine learning process be selected in order to produce the best

predictive model for the knowledge engineering problem under consid-

eration?

A key step in many knowledge engineering problems is the selection of the values

of the different parameters involved in the machine learning process. Examples

of some of the parameters that need to be selected include: the features used for

representing the data and the type of machine learning algorithm to be used. The

process of determining the optimal set of parameters for a given application is

typically addressed through time-consuming heuristics and ad-hoc experimenta-

tion. To address and resolve this issue, we have developed a simple and effective

approach based on statistical Design of Experiments (DOE) for optimizing the

parameters associated with the machine learning process. In the DOE approach

[Taguchi and Konishi, 1987] we treat each external model parameter, including

the learning algorithm, as an experimental factor. We then design a set of ex-

periments using orthogonal arrays to efficiently explore the experimental space of

model parameters and determine the settings that produce the optimal model with

respect to a desired performance metric. A detailed description of the statistical

DOE approach is provided in Chapter 5.

Applied Research Issue 3: How should the appropriate software nec-

essary for automating the processes used by engineers to solve a par-

ticular knowledge engineering problem be designed, developed, and

implemented?

The deployment of efficient and robust solutions to knowledge engineering prob-

lems requires custom software products that automate the work process of the

engineers engaged in the solution of these problems. To this end, we draw upon

the engineering design domain to provide formal methods for explicitly defining

the user needs and exploring different design concepts in order to ensure that the
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end product is high-quality and low-cost. We have integrated four engineering

design methods for the purposes of developing high-value knowledge engineering

software products (KESPs). First, the House of Quality is used to correlate the

user needs to technical specifications that can be used to develop the KESP. The

function structure technique is then used to create a solution-neutral functional

specification of the KESP. Next, we create a morphological matrix of solution

principles in order to systematically explore the design space and generate al-

ternative KESP design concepts. Lastly, a utility function is used to assess the

design concepts so that a single high-value concept can be selected for further

development. In addition, the development process for KESPs requires software

engineering methods and tools, such as the Unified Modeling Language Schach

[2008], in order to ensure that a reliable and easy to use KESP is delivered on

time and within budget. A detailed description of the aforementioned engineering

design and software engineering methods and tools is provided in Chapter 6.

1.4 Organization of the Thesis

The thesis is organized as follows: Chapter 2 develops the three knowledge engineer-

ing problems addressed in the thesis, formulates the overarching research issue, and

surveys existing work in related domains. Chapter 3 develops the Integrated Meta-

Representational Model (IMRM) for structuring complex knowledge engineering prob-

lems such as the three knowledge engineering problems described in Chapter 2. The

implementation of the representation-based models for the three knowledge engineering

problems of interest is then discussed in Chapters 4 (product quality monitoring and

assessment), 5 (predicting service request escalation), 6 (development of knowledge en-

gineering software products). Chapter 7 summarizes the key contributions of the work

and then suggests future work related to the generalization of the representation-based

approach developed in this thesis.
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2 Problem Statement

The purpose of this chapter is to develop the problem statement for the creation of

a theoretical framework that enables the selection and integration of methods from

multiple engineering domains within the context of knowledge engineering problems.

In order to motivate the need for this framework we use three complex knowledge

engineering problems related to the design, development, and delivery of enterprise

computer networking products. The formulation of these problems in Section 2.1 leads

to a discussion of the inter-disciplinary nature of knowledge engineering in Section 2.2.

Section 2.3 surveys related work in the engineering domains involved, and reveals a large

number of useful methods and tools but a distinct lack of frameworks for systematically

identifying and applying the necessary methods and tools for a particular problem.

Based on this important need, section 2.4 defines the overall problem statement for the

thesis and outlines the tasks involved.

2.1 Three Knowledge Engineering Problems in the Computer Net-

working Domain

This thesis addresses the following three problems in the computer networking domain:

1. Product Quality Monitoring and Assessment: use unstructured customer

service request data to monitor and assess the quality of computer networking

products in service.

2. Predicting Service Request Escalation: use historical customer service re-

quests to determine whether or not a new customer service request should be

escalated in priority to ensure that it is resolved in a timely manner.

3. Development of Knowledge Engineering Software Products: create soft-

ware for automating the extraction of problem-solution pairs from customer service
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requests in order to improve the productivity of the work-process of engineering

product development teams.

The sub-sections below provide a brief description of each of the three problems and

summarize the key issues involved.

2.1.1 Product Quality Monitoring and Assessment

Monitoring and assessment of the quality of products in service is an important feedback

loop for product design, development, and delivery. Network service centers receive

thousands of service requests every day on a wide range of customer problems, both

hardware and software. Although readily available, customer service request data typ-

ically consists of free-form text problem descriptions provided by the customer, which

makes it difficult to directly apply existing monitoring approaches, such as control

charts, that are based on time-series analysis.

Each service request consists of an unstructured (free-form text) customer description

of a failure mode that occurred and a time-stamp. The unstructured format of the

problem description poses the following challenges: customers use different language

to describe the same failure mode; computer-network specific-domain terminology; and

duplicate or irrelevant information.

Monitoring and assessing product quality using service request data involves the

following four sub-problems:

1. Failure Modes Definition: Determine the set of failure modes that we would

like to monitor for the product of interest.

2. Failure Mode Quantification: Measure the daily occurrence of each failure

mode in the collected service requests.
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3. Time-series Analysis: Determine the nominal (expected) daily occurrence of

each failure mode and the deviation of the actual daily occurrence from its nominal

value.

4. Quality Metrics Computation: Define and compute a set of metrics for char-

acterizing the occurrence of each failure mode.

Each of the four sub-problems, and the overall product quality monitoring and as-

sessment problem, is described in detail in Chapter 4.

2.1.2 Predicting Service Request Escalation

Network service centers are responsible for providing customers with assistance for a

wide range of product problems ranging from relatively simple issues, e.g. such as how

to configure a particular feature, to severe failure modes that cause network downtime.

After a service request is received by the customer support organization, it is routed to

the team of support engineers best suited for resolving the customer’s problem. This

routing decision is based on number of factors including the type of product, technology

area, and severity of the problem. For a small percentage of cases it is necessary to

escalate the service request in priority and re-route it to a new support team in order

to resolve the customer’s problem in a timely manner. The escalation process after

a service request has already been re-routed is typically very expensive; escalating a

single service request typically costs several hundred thousand dollars and is resource

intensive. Predicting which service requests are likely to be escalated and escalating

them immediately after they are received by the service center would significantly reduce

the cost associated with the escalation process.

The problem of predicting whether or not an incoming service request should be

escalated is a standard binary classification problem. We need to create a machine

learning classification model for mapping service requests to escalation labels (escalate
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or do not escalate). The machine learning process for creating this machine learning

model has the following complications that need to be resolved:

1. There are number of well-known supervised machine learning algorithms (decision

trees, support vector machines, etc.) that can be used to generate a classification

function from historical data; however, the performance of these algorithms can

vary significantly across different data-sets. We need to determine the best algo-

rithm for the service request escalation problem.

2. The historical data-set of service requests is imbalanced, i.e. the majority of

service requests do not require escalation.

3. The misclassification costs associated with each service request are not symmet-

rical. A service request that is not escalated when it should have been will have

several times the cost when compared to a service request that is incorrectly esca-

lated when it should have not been, with respect to both dollar cost and customer

satisfaction to the organization.

4. Each service request contains over a hundred different features or attributes. Most

of these features, e.g. customer address, are not relevant or even useful for pre-

dicting if a service request needs to be escalated.

The complete description of the predicting service request escalation problem is pro-

vided Chapter 5.

2.1.3 Development of Knowledge Engineering Software Products

Smart network devices, e.g. routers and switches, pro-actively detect potential problems

and take corrective actions. The intelligence in these products comes from a set of

diagnostic rules that are written by Network Knowledge Engineers (NKEs). In order to
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write these rules, the NKEs first search through the resolved customer service requests

in order to extract problem-solution pairs for frequent customer problems.

The current, largely manual, process for extracting problem-solution pairs consists of

two high-level activities: searching for relevant service requests to a particular problem,

and reading the relevant service requests in order to extract problem-solution pairs.

The NKEs currently use a search engine to perform keyword searches in order to locate

relevant service requests, and a web-based viewer to read the service requests.

The NKEs’ manual work process is very inefficient because of the following problems:

1. Precision problem: Keyword searches typically return a large number of search

results that are time consuming to evaluate for relevance.

2. Summary problem: The service request documents do not include a clear de-

scription of the solution that resolved the customer’s problem.

3. Repetition: The service request documents typically contain a large amount of

repetition in the form of repeated email threads and redundant case notes.

The “precision” problem impacts the information retrieval aspects of the NKE work

process and requires the NKEs to manually evaluate a large number of irrelevant search

results. The “summary” and “repetition” problems impact the extraction of problem-

solution pairs from relevant service requests. In particular, the long length of each

service request (typically 30-50 pages of free-form text) in combination with the presence

of irrelevant email threads, poorly formatted text, and duplicate content make reading

each service request difficult and time consuming.

From the perspective of the NKEs, the KESP problem statement is as follows: de-

velop a software product to automate the tedious and manual aspects of extracting

problem-solution pairs. In particular, the NKEs would like the software product to
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make it easier to find relevant service requests for a particular product problem (the

“precision” problem) and extract the problem-solution pairs from a given service request

(the “summary”, and “repetition” problems). From the perspective of the networking

company, the KESP problem statement is as follows: develop a software product to

improve the productivity of the NKEs and decrease the cost of developing problem-

solution pairs. The complete description of the development of knowledge engineering

software products problem is provided in Chapter 6.

2.2 The Engineering of Knowledge Engineering

It quickly becomes apparent that addressing the aforementioned knowledge engineering

problems requires more than one engineering domain. First, each problem involves

domain knowledge about computer networking products and services which needs to

be modeled and incorporated into the overall solution to the problem. Second, because

the problems involve a combination of structured and unstructured data we need to use

different kinds of analytical techniques. For example, for the monitoring and assessment

problem we need to use machine learning to translate the unstructured customer service

request data into time-series data that can be processed using techniques from time-

series analysis. Third, these problems require the development of software artifacts

that needs to be embedded into the overall organization that designs and develops the

computer networking products and services.

Before we discuss the engineering domains required to solve these problems in more

detail, however, it is useful to first describe the nature of the activities involved in

engineering in general and how these activities relate to the three problems under con-

sideration.

There are a central core of activities that are general to all engineering problem

regardless of the domain or application area. In this work we distinguish between
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the following four fundamental engineering activities that together form the basis for

engineering as a discipline:

1. Design: the development of a concept (form) for the engineering system to satisfy

a set of (customer) needs. [Pahl and Beitz, 1996]

2. Analysis: the mathematical modeling of the important aspects of engineering

systems. Ver Planck and Teare [1954]

3. Experimentation: the generation of information to guide design and prototyping

/ manufacturing decisions. [Srinagesh, 2006]

4. Prototyping/Manufacturing: the building and testing of prototypes for vari-

ous purposes including “proof-of-concept” and production. [Pahl and Beitz, 1996]

[Schach, 2008]

Each of the three knowledge engineering problem instances described in the previous

section—quality monitoring and assessment, predicting service request escalation, and

development of knowledge engineering software products—involve one or more of the

fundamental engineering activities. Table 2.1 below shows the decomposition of each

problem based on the four engineering activities. The shading associated with each

circle indicates the intensity of the activity involved.

In general any particular problem will have a primary focus with respect to the

four engineering activities. For example, the primary activity for the product quality

monitoring and assessment problem is analysis. This primary activity is indicated in

Table 2.1 by a fully shaded circle.

In addition to the focus area, the complex nature of these problem also requires

other aspects of engineering. Each of these secondary activities are shown as a half-

filled circle in 2.1. For example, the product quality monitoring and assessment problem
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Design Analysis Experiments Prototyping
Manufacturing

Quality Monitor-
ing and Assess-
ment

H#  # H#

Service Request
Escalation

# H#  #

Development of
Knowledge Engi-
neering Software
Products

 # H# H#

Table 2.1: Analysis of the three knowledge engineering problems with respect to the
four engineering activities

also involves design activities where we are modeling computer networking products and

prototyping and manufacturing activities where we are developing software automation.

2.3 Literature Survey of Knowledge Engineering Domains

In the previous section we established that design, analysis, experimentation, and proto-

typing/manufacturing are general activities that occur across a wide range of engineering

applications. As a result, there is a large body of work in engineering that addresses

issues related to design, analysis, experimentation, and prototyping/manufacturing. In

the context of knowledge engineering problems the following four engineering domains

contain methods and tools that are useful for addressing these activities:

1. Machine Learning (Analysis) : extracting patterns and learning predictive

models from data ([Witten and Frank, 2005], [Hastie et al., 2009]).

2. Software Engineering (Design, Prototyping / Manufacturing): designing

and implementing reliable and easy to use software systems [Schach, 2008].

3. Product Design and Development (Design, Analysis): designing high-

quality products that satisfy user needs ([Fox, 1993], [Pahl and Beitz, 1996]).
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4. Experimental Statistics (Experimentation): the use of statistical method-

ologies in the analysis and design of experiments ([Fisher, 1935], [Taguchi and

Konishi, 1987], [Srinagesh, 2006]).

A detailed review of literature of the methods from each of these engineering domains

is provided in Chapters 4, 5, and 6. Chapter 4 provides a detailed survey of work in

machine learning and product design and development within the context of the product

quality monitoring and assessment problem. Chapter 5 provides a detailed survey of

work in machine learning and experimental statistics within the context of the problem

of predicting service request escalation. Chapter 6 provides a detailed survey of work

in product design and development and software engineering within the context of the

problem of developing knowledge engineering software products.

2.4 Thesis Problem Statement

The rapid development of high-quality solutions to complex knowledge engineering prob-

lems requires methods from one or more of the following domains: machine learning,

product design and development, software engineering, and experimental statistics.

Without a structured process for handling the integration of these domains, the se-

lection and application of methods is often ad-hoc, and, being ad-hoc, suffers from a

number of problems including: inefficiencies due to applying the wrong method or tool

for the problem, incomplete solutions that do not fully address the problem under con-

sideration, and low-quality by emphasis on the technical aspects of the problem rather

than users’ needs. The combination of these factors, in particular the lack of attention

to the user and organizational needs, frequently results in the development of solutions

that do not yield the desired results.

In order to address these issues we need a framework to organize or structure the

relevant subject-matter domains and the diverse set of methods and tools from these
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domains necessary for a comprehensive solution to the problem at hand. The develop-

ment of this framework, addressed in Chapter 3, is the primary research problem and

main contribution of this thesis.
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3 Representation-Based Models for Knowledge Engineer-

ing

The purpose of this chapter is to develop the theoretical framework for the selection

and integration of methods and tools from multiple engineering domains within the

context of knowledge engineering problems. To this end, the chapter is organized into

four parts. Section 3.1 develop our five layered representation-based model, called the

Integrated Meta-Representational Model (IMRM), that allows complex knowledge engi-

neering problems to be structured so that the necessary domains and associated methods

and tools can be determined, and then applied toward the solution of the knowledge

engineering problem. Section 3.2 provides a brief literature survey of existing work

related to representation and problem-solving that we used in creating the IMRM. Sec-

tion 3.3 is an overview for how to apply the IMRM to knowledge engineering problems.

Lastly, Section 3.4 illustrates the process of applying the IMRM to the three knowledge

engineering problems developed in Chapter 2 and discusses the resulting representation-

based models.

3.1 The Integrated Meta-Representational Model

Real-world knowledge engineering problems are, in general, complex and ill-structured.

The combination of multiple engineering domain and overlapping alternative methods

inside each of these domains results in a large number of possible approaches to solving

any particular knowledge engineering problem. Furthermore, different domains tend to

conceptualize and represent knowledge differently which makes it difficult to integrate

methods across domains.

In order to apply methods from different engineering domains we need a com-

mon representational language for problem-solving. To this end, we have developed a
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representation-based approach that provides an integrated layering of problem elements,

engineering domains, and methods and tools from these domains in order to solve the

problem of interest. This functional layering of a problem provides an abstract subject-

matter domain-neutral model that then enables the selection of the appropriate subject

matter domains, and, in concurrence the associated methods and tools for each layer of

the representation. The Integrated Meta-Representational Model (IMRM) ([Desa and

Munger, 2013], [Munger et al., 2015]), consisting of five sequential problem-solving lay-

ers shown in Figure 3.1, provides the theoretical framework of our representation-based

approach.

External OutsideOutside-In Internal Inside-OutNeed
(Initial State)

Satisfied 
Need

(Goal State)

Figure 3.1: The Integrated Meta-Representational Model

The IMRM begins with an initial state, called the External layer, that represents

how the problem under consideration is solved at the present time. From this initial

state, the IMRM progressively works towards the goal state, called the Outer layer,

which provides the solution to the problem. The five layers of the IMRM that take us

from the initial state to the goal state are defined as follows:

1. External: represents the context for the initial state in terms of the way in which

things are done at the present time.

2. Outside-In: represents the transformation of the External layer into a set of

functional requirements for the form of the desired solution.
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3. Internal: represents the abstract functional specification of the Outside-In layer

in a manner that enables the exploration and selection of form (design) for the

desired function.

4. Inside-Out: represents the conversion of the Internal layer into a realizable form.

This layer includes all the relevant domain knowledge necessary to the development

or embodiment of the design created in the Internal layer.

5. Outer: represents the implementation process that transforms the Inside-Out

layer into the actual solution.

3.2 Literature Survey for Representation-Based Models

The Integrated Meta-Representational Model (IMRM) is a representation-based ap-

proach to solving complex multi-disciplinary problems. The notion of representation is

also used in the following domains:

1. Cognitive Science: Representation is used to model how the human brain en-

gages in information processing [Bermudez, 2014].

2. Artificial Intelligence: Representation is used to model different states in a

problem space and the transition between states in order to solve the problem

[Russell et al., 2003].

3. Engineering Design: Representation is used during the conceptual design pro-

cess to establish the desired product functions, search for working solutions, and

create the design or form for the product ([Alexander, 1964], [Pahl and Beitz,

1996]).

The five layers of the IMRM are based on the following three ideas from work in

the aforementioned domains. The first idea is the notion that problem-solving is a
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representation-based process. Recent work in cognitive neuroscience has shown that

the human-brain is a representational system, i.e. the human-brain solves problems

by developing representations appropriate for solving the problem ([Metzinger, 2003],

[Revonsuo, 2009]). Based on this important idea we structure the problem-solving pro-

cess using representational layers. These layers provide a natural, intuitive way of guid-

ing the problem-solver through the process of creating the representations appropriate

for solving the problem.

The process of solving a complex problem can be modelled using three different

types of representations: an initial state which represents the problem to be satisfied,

goal state which represents the desired solution to the problem (e.g. satisfaction of the

need), and a set of intermediate or internal states to go from the initial state to the goal

state [Simon, 1973]. The second idea in the IMRM is the distinction between external

and internal representations in problem-solving. One of the important conclusions from

work in artificial intelligence [Russell et al., 2003], cognitive science [Bermudez, 2014],

and engineering design ([Alexander, 1964], [Pahl and Beitz, 1996]) is that the internal

representation used by the problem-solver has a significant impact on the quality and

speed of problem-solving. In studies using the Towers of Hanoi problem, it is shown

that different representations of the same problem could require up to sixteen times

the amount of time to solve [Kotovsky et al., 1985]. The Internal layer of the IMRM

addresses the internal representation by having the problem-solver explicitly consider

what representation of the problem is necessary to enable the rapid development of a

high-quality solution. It is also important to note that internal and external models are

also used in control theory [Franklin et al., 1994].

The third idea is the notion of integration between the layers. The Integrated Infor-

mation Theory (IIT) [Tononi, 2004], from cognitive neuroscience, explains consciousness

as a function of the integrated information in a system. The theory asserts that human

brain integrates information, and that by integrating information increases the overall
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information content of the system which leads to consciousness. Following from this

notion, we have integrated the five layers of the IMRM in order to increase the overall

information content of the representational model and, thereby, reduce the cognitive

burden on the problem-solver who is applying the model.

3.3 Applying the Integrated Meta-Representational Model

The Integrated Meta-Representational Model (IMRM) provides an abstract framework

for layering of problem elements, engineering domains, and methods and tools. We

refer to the layering of a particular problem as a representation-based model for the

problem under consideration. This representation-based model provides a step-by-step

process for how to apply the necessary methods and tools in order to efficiently develop

a high-quality solution to the problem under consideration.

The overall process for applying the IMRM to create a representation-based model

for a particular problem is as follows:

1. Determine the subject matters being represented: For each level of repre-

sentation determine the appropriate subject matter that needs to be represented.

For example, if we are developing a software system, the subject matter at the

Inside-Out level of representation is the software design that specifies how the

artifact will be constructed.

2. Identify the necessary methods and tools: For each subject matter identify

the appropriate set of domains and tools necessary for representation. For exam-

ple, if our subject matter is the software design of a system, then we will need

tools from the domain of Software Engineering in order to represent the software

architecture, data structures, control logic, etc.

3. Integrate the selected tools: The selected tools need to be integrated at two
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levels. At the first level the individual tools for each level of representation must

be integrated so that they can be used together to resolve the issues for that par-

ticular layer. At the second level, the tools across the five levels of representation

must be integrated so that the artifact is consistently represented throughout the

development process in order to solve the problem of interest.

It is important to note that the mapping of the representational needs to the layers

of the IMRM, and the selection of the appropriate methods and tools, involve trial and

error.

The representation-based model, resulting from applying the IMRM to a particular

problem, has the following features that facilitate the rapid development of high-quality

solutions:

1. Each layer is a representation (or map) of the necessary steps in the process of

designing and developing a high-value solution to solve a particular problem. The

five layers of the IMRM are labelled as follows: External, Outside-In, Internal,

Inside-Out, and Outer. The first layer, the External, represents the initial state of

the problem under consideration; while the fifth layer, the Outer, represents the

complete solution to the problem.

2. As one progresses through the five layers of representation, the level of abstraction

first increases (External to Internal) and then decreases (Internal to Outer). By

focusing resources (people, time, money) at the appropriate level of abstraction,

the IMRM allows for a more comprehensive approach to ensuring and maximizing

the satisfaction of the customer needs; resolving trade-offs between quality, cost,

and time; incorporating user feedback into prototyping / manufacturing activities.

3. The sequential and functional layering of IMRM supports the concurrent selection

of the appropriate methods and tools and their placement in the proper layer. This

26



www.manaraa.com

enables the functional (“input-output”) integration of the selected methods and

tools, and thereby, facilitates a seamless transition between the layers.

3.4 Representation-based Models for Knowledge Engineering Prob-

lems in the Computer Networking Domain

In this section we demonstrate the application the Integrated Meta-Representational

Model to the three knowledge engineering problems developed in Section 2. The treat-

ment of each problem is separated into two parts. First, we discuss the layering of

the problem elements, the corresponding engineering domains, and the necessary set of

methods and tools from each engineering domain. We then show the functional integra-

tion of the selected methods and tools which results in the representation-based model

for solving the particular problem under consideration.

3.4.1 Representation-Based Model for Product Quality Monitoring and As-

sessment

Table 3.1 shows the layers, representational subject matters, domains, and methods for

the problem of product quality monitoring and assessment. In order to represent the

product domain knowledge at the External layer we have selected two tools from the

engineering design domain: the Functional Analysis System Technique (FAST) [Fox,

1993] for representing the function and form of a product and the Failure Modes and

Effects Analysis (FMEA) [Fox, 1993] method for identifying product failure modes.

From the data mining domain we have drawn upon three well-known machine learning

algorithms—decision trees, naive bayes, and support vector machines [Hastie et al.,

2009]—to learn the mapping function at the Outside-In for labeling each service request

with a corresponding failure mode. At the Internal layer, we use double exponential

smoothing [Chopra, 2007] to estimate the nominal component of each failure mode time-
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history. At the Inside-Out layer we use a Shewart Control Chart [Lawson and Erjavec,

2001] to monitor the deviation component of each failure mode. The Outer layer uses

the same engineering design tools, FAST and FMEA, from the External layer in order

to assess product quality and make recommendations for quality improvement.

Figure 3.2 shows the integration of the methods and tools described above. The

resulting representation-based model is implemented by sequentially stepping through

each layer as follows:

1. External layer. Model the function and form of the product of interest using

a FAST diagram. For each major product component, perform a Failure Modes

and Effects Analysis (FMEA) to identify potential failure modes. Select a subset

of critical product failure modes from the FMEA to monitor and assess.

2. Outside-In layer. manually label a small subset of training data with the corre-

sponding failure modes using the FAST and FMEA. Use the labeled data as input

to machine learning algorithms in order to learn the classification function. Se-

lect the most accurate classifier and use it to label the complete customer service

request data set.

3. Internal layer: use the labelled service request data to create a time-history for

each failure mode. The nominal component of each failure mode is estimated by

the forecast from the Exponential Smoothing method. The deviation component

of each failure mode is obtained by differencing the actual time-history and the

nominal component estimate. (These concepts are defined in detail in Chapter 4)

4. Inside-Out layer: calculate the nominal metrics directly from the time-history

of the nominal component. Calculate the deviation metrics by applying a Shewart

control chart to the deviation component.

5. Outer layer: apply the assessment guidelines from the External layer to the

static, nominal, and dynamic metrics computed at the Inside-Out layer.
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Layer Subject Matter
Domains and Representational Methods/Tools

Product Design
and Development

Machine Learning Time Series Analy-
sis

External Product Failure
Modes

FAST and FMEA

Outside-In Machine Learning
Model for Failure
Mode Classifica-
tion

Decision Trees,
Naive Bayes,
Support Vector
Machines

Internal Time-Series Analy-
sis

Double Exponen-
tial Smoothing

Inside-Out Quality Monitor-
ing

Control Charts

Outer Quality Assess-
ment

FAST and FMEA

Table 3.1: Layer-Subject matter-representational tools/methods matrix for product
quality monitoring and assessment

Figure 3.2: Representation-based model for product quality monitoring and assessment

The implementation the representation-based model, shown in Figure 3.2, is de-

scribed in detail in Chapter 4.

3.4.2 Representation-Based Model for Predicting Customer Service Re-

quest Escalation

Table 3.2 shows the layers, representational subject matters, domains, and methods

for the problem of predicting service request escalation. In order to capture and rep-

resent the technical, organizational, and financial considerations at the External layer
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Layer Subject Matter
Domains and Representational Methods/Tools

Knowledge Engi-
neering

Machine Learning Experimental
Statistics

External Organizational
context and cur-
rent work process
for service request
escalation

CommonKADS
Organization,
Agent, and Task
Models

Outside-In Performance met-
ric

Taguchi method:
Signal-to-Noise
Ratio

Internal Experimental De-
sign

Taguchi method:
Orthogonal Ar-
ray for Planned
Experiments

Inside-Out Perform Experi-
ments

Weka Machine
Learning Work-
bench

Outer Model Selection Taguchi method:
Analysis of the
Means (ANOM)

Table 3.2: Layer-subject matter-representational tools/methods matrix for predicting
service request escalation

we use three models from the CommonKADS methodology: the organization model,

the agent, and the task model. The Outside-In layer uses signal-to-noise (s/n) ratios

[Phadke, 1989], a technique from Robust Design, to define a quality characteristic and

objective function for the escalation prediction model. At the Internal layer, we use the

Taguchi methodology [Taguchi and Konishi, 1987] to create planned set of experiments

for determining the optimal model with respect to the objective function. The Inside-

Out layer we implement the experiments using the Weka machine learning work-bench

[Witten and Frank, 2005]. Inside Weka we use three well-known classification learning

algorithms: naive bayes, support vector machines, and random forests. At the Outer

layer we analyze the results from the experiments and use the optimal parameters to

generate a prediction model.

Figure 3.3 shows the representation-based model resulting from the integration of the

methods and tools described above. The model is implemented by sequentially stepping

through each layer as follows:
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Figure 3.3: Representation-based model for predicting service request escalation

1. External layer: Capture the work-process that the machine learning model will

automate by creating a CommonKADS Agent/Task Model.

2. Outside-In layer: Determine the performance metric that the machine learning

model needs to optimize. Transform the performance metric into a signal-to-noise

(s/n) ratio function to be maximized.

3. Internal layer: Determine the control, signal, and noise factors for the machine

learning model. Select the appropriate orthogonal array and assign the factors

and the factor settings or levels, respectively, to the columns and rows of the

orthogonal array matrix.

4. Inside-Out layer: Perform the experiments in the Weka machine learning work-

bench. Record the prediction results for the test data-set and compute the s/n

ratio for each experiment.

5. Outer layer: Perform Analysis of the Means (ANOM) to compute the s/n ratios

for each combination of factor and level setting. Select the combination of factor

settings that maximize the overall s/n ratio. Perform a verification experiment to

check the results.

The implementation the representation-based model, shown in Figure 3.3, is de-

scribed in detail in Chapter 5.
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3.4.3 Representation-Based Model for the Development of Knowledge En-

gineering Software Products

Table 3.3 shows the layers, representational subject matters, domains, and methods for

the development of knowledge engineering software products. The External layer uses

the Organization and Agent/Task CommonKADS models [Schreiber, 1994] from the

knowledge engineering domain to model the currently manual work process that needs

to be automated. The Outside-In layer uses the House of Quality method [Hauser and

Clausing, 1988] and UML Use Case diagrams [Schach, 2008] to capture the end-user

needs and desired user experience for the KESP. The Internal layer uses the Function

Structure [Pahl and Beitz, 1996], Morphological Matrix [Pahl and Beitz, 1996], and

Utility Function [Pahl and Beitz, 1996] methods from the product design domain in

order to explore different function realizations for the software automation and manage

the inevitable trade-offs between quality and cost. The Inside-Out layer uses the Unified

Modeling Language Component and Class diagrams [Schach, 2008] from the software

engineering domain to create the software design for the KESP. The Outer layer uses

the Iterative and Incremental development methodology [McConnell, 1996] from the

software engineering domain to develop the KESP software implementation.

Figure 3.4 shows the information flow integrating the methods and tools from Table

3.3 into a representation-based model. Each information flow is depicted as directional

arrow that shows the relationship between the inputs and outputs of two methods

(with the exception of information flow (7) which involves the output of two different

methods).

The representation-based model is implemented by sequentially stepping through

each layer shown in Figure 3.4 starting with the initial state or high-level user need as

follows:

1. External layer: take the high-level user need (see (1) in Figure 3.4) from the
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initial state as input and create the CommonKADS Organization and Agent/Task

models of the current work processes.

2. Outside-In layer: use the work process model (2) to create a House Quality and

set of Use Case diagrams for the KESP. The Outside-In layer captures what the

end-users want from the product and ensures that the KESP is high quality with

respect to the user needs

3. Internal layer: use the user requirements (3)(5) and Use Case diagrams (4) to

create the Function Structure, Morphological Matrix, and Utility Function for the

KESP.

4. Inside-Out layer: create a UML Component diagram and corresponding set of

UML Class diagrams to transform the design concept (6)(7) into a software design

for the KESP.

5. Outer layer: implement the software architecture (8) and classes (9) to produce

the KESP that satisfies the goal state (10).

The implementation the representation-based model, shown in Figure 3.4, is de-

scribed in detail in Chapter 6.
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Layer Subject Matter
Domains and Representational Methods/Tools

Knowledge Engi-
neering

Product Design Software Engineer-
ing

External Organizational
context and cur-
rently manual
Knowledge En-
gineering work
process

CommonKADS
Organization,
Agent, and Task
Models

Outside-In User needs for soft-
ware automation

House of Quality Use Case Diagrams

Internal Conceptual de-
sign (functional
specifications,
solution-principles,
design concept for
the product)

Function Struc-
ture, Morphologi-
cal Matrix, Utility
Function

Inside-Out Software design
(architecture, data
structures, algo-
rithms, control
logic)

UML Compo-
nent and Class
Diagrams

Outer Software develop-
ment (planning,
implementation,
and testing)

Iterative and Incre-
mental
Development

Table 3.3: Layer-subject matter-Representational tools/methods matrix for knowledge
engineering software products

Outside-In
Level of Representation

Internal
Level of Representation

Use Case
 diagrams

House of
 Quality

Function 
Structure

Morphological
Matrix

Utility 
Function

External
Level of Representation

Inside-Out
Level of Representation

Outside
Level of Representation

Agent/Task
Model

Component
Diagram

Class
Diagram

Incremental
Development

Organizational
Model

Development
Plan

Initial
State Goal

Figure 3.4: Representation-based model for knowledge engineering software product
development
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4 Structuring Technical Domain Knowledge: Theory and

Application to Product Quality Monitoring and Assess-

ment

In this chapter we address the application of the representation-based framework, devel-

oped in Chapter 3, to the knowledge engineering problem of monitoring and assessment

of the quality of products in service. Since the data in this application is often unstruc-

tured and in the form of text exchanges between the customer and the enterprise, this

problem involves the more general knowledge engineering research issue of modeling

domain knowledge in order to produce meaningful results when mining unstructured

data. Existing approaches share the common issue that the knowledge extraction re-

sults are often not properly structured for solving the engineering problem of interest

and, therefore, require manual post-processing before they can be applied.

In this chapter we develop an approach to structuring technical domain knowledge

that is based around the a priori modeling of the engineering problem of interest in order

to enable: (1) efficient (rapid) collection, representation, and structuring of domain

knowledge; and (2) the proper integration of domain knowledge with analytical KE

methods in order facilitate the extraction of useful knowledge. We have demonstrate

our approach to monitor and assess the quality of a network security product at a large

computer networking company using a data set of 100,000 customer support cases

The chapter is organized as follows. Section 4.2 formulates the four distinct sub-

problems involved in product quality monitoring and assessment. Section 4.3 assesses

existing approaches to product quality monitoring and assessment with respect to the

four sub-problems. Section 4.4 describes the application of the IMRM to the prod-

uct quality monitoring and assessment problem. Section 4.5 shows the implementation

of representation-based model using a real-world example involving customer service
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requests for a computer network security device. Section 4.6 provides the quality mon-

itoring and assessment results for the computer network security device.

4.1 Introduction

Enterprises are increasingly attempting to transform the massive amounts of data be-

ing collected from customers into actionable knowledge that can be applied to design,

development, and delivery of products and services. The purpose of this section is to

properly motivate this problem, outline the research issues involved, and describe our

key contributions.

4.1.1 Background

The engineering context for product quality monitoring and assessment can be orga-

nized into three cycles of activity: product design, development, and delvivery [Desa

and Kannapan, 1995]. The product design, development, and delivery cycle (PD3)

transforms a market need into a product delivered to that market. The product design

and development cycle (PD2) transforms the market need into a product. The prod-

uct design cycle (PD) transforms the market need into an embodiment design for the

product [Pahl and Beitz, 1996].

Monitoring and assessment of product quality during PD2 (design and development)

has been addressed by a large body of existing work. Several well-known approaches

that have been used in industry are: control charts [Lawson and Erjavec, 2001], failure

modes and effects analysis [Teng and Ho, 1996], the quality function deployment method

[Hauser and Clausing, 1988], design of experiments [Phadke, 1989], and more recently

six sigma [Harry and Schroeder, 2006]. However, relatively little work has addressed

formal engineering methods for the monitoring and assessment of quality for products

in service. The information that could be obtained from monitoring and assessing the
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quality of products in service has a wide range important applications to PD3 includ-

ing: assessing the effectiveness of product design processes, improving the design of

future products with respect to quality, and developing automated solutions to frequent

customer problems.

The key challenge in quality monitoring and assessment during PD3 is obtaining

suitable data for measuring product quality. Sensor networks have been used successfully

used to monitor quality for large industrial products such as wind turbines [Garcia

et al., 2006]. However, these sensors are expensive and monitoring them requires close

cooperation with customers, which is not feasible for many applications. In this work we

demonstrate how unstructured (or free-form text) problem descriptions from customer

service requests, a type of data being collected by most enterprises that provide technical

support for their products, can be used to monitor and assess the quality of products

in service across a large number of customers.

4.1.2 Research Issues

The use of unstructured customer service requests for quality monitoring and assessment

involves three general knowledge engineering research issues:

1. The structuring of subject-matter domain knowledge to organize unstructured

data in complex technical domains.

2. The selection and integration of methods and tools from multiple domains.

3. The development of software environments for automating the application of the

selected methods and tools for large data sets.
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4.1.3 Contributions

Our contributions to the aforementioned research issues directly follow from the applica-

tion of the Integrated Meta-Representational Model to the product quality monitoring

and assessment problem, and are as follows:

1. We have applied the Integrated Meta-Representational Model to first identify, and

then select methods and tools from three engineering subject matter domains—

engineering design, machine learning, and time-series analysis—for addressing the

quality monitoring and assessment problem (see Section 4.4).

2. We developed a process methodology, called the Product Quality Monitoring

and Assessment Process Methodology (PQMAPM), that provides the theoretical

framework for using the selected methods within the context of product quality

monitoring and assessment. The key idea in the process methodology to translate

the free-form text provided by the customer into engineering failure modes. To this

end we use two methods from engineering design, the Function Analysis System

Technique (FAST) and Failure Modes and Effects Analysis (FMEA), to collect

and structure of the failure modes for the product of interest. We then apply a

machine learning model, created using the support vector machines algorithm, to

label each service request with a corresponding failure mode. Lastly, time-series

analysis methods—exponential smoothing and control charts—are used to com-

pute a number of metrics for monitoring product quality from the aggregated daily

occurrence for each failure mode (see Section 4.5).

3. We have demonstrated the Product Quality Monitoring and Assessment Process

Methodology within the real-world context of network security device. The quality

metrics, computed using 100,000 customer service requests, have numerous practi-

cal product design, development, and delivery applications including: identifying

product features with poor quality, improving service center resource allocation,
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and providing an early warning system for potential quality problems (see Section

4.6).

4.2 Problem Formulation

The purpose of this section is to describe the problem of quality monitoring and assess-

ment for products in service. To this end, we start by defining quality monitoring and

assessment as it is used in this chapter. From this definition, we then organize quality

monitoring and assessment into four distinct sub-problems using a real-world example

involving a product manufacturer in the computer networking industry.

In our context, a high-quality product is one for which the frequency of occurrence

of the failure modes is very low. Essentially a quality product is a reliable as measured

by the failure rate. Monitoring and assessment are two distinct but related activities

that are defined as follows [Phadke, 1989]:

1. Quality Monitoring: The ongoing measurement of the quality of a product as

defined by a set of performance metrics

2. Quality Assessment: The use of the information obtained from quality moni-

toring to guide decisions related to improving product quality.

Monitoring and assessment can be performed during one or all three PD3 cycles.

This work specifically addresses quality monitoring and assessment of products in ser-

vice (the product delivery cycle of PD3). In order to concretely draw out the distinct

sub-problems involved in this context consider the following quality monitoring and

assessment problem involving a network security product.

The Cisco ASA 5505 is a network security product that provides a combination fire-

wall, intrusion detection, and virtual private network client/server for small to medium
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businesses. In addition to the standard network security related functionality, an impor-

tant function of the ASA 5505 is the so-called fail-over feature that allows two separate

ASA 5505 products to be operating simultaneously in order to provide redundancy in

the case of a failure.

In order to enable the fail-over feature, a customer will designate one ASA 5505 as

the primary network device. This device is then powered on and configured normally

to process network traffic. The second device is then powered on, but is configured as a

secondary device that does not process network traffic. Once both devices are powered

on, the primary device will periodically send the secondary device an update message

containing the current state of the network. When the secondary device does not receive

an update from the primary device after a certain specified period of time it will take

over the responsibilities of the primary device and start processing network traffic based

on the most recent update it has received.

The product manufacturer would like to monitor the failure modes for products in

service in order to determine and improve the quality level of the ASA 5505 fail-over

feature. Some examples of the monitoring and assessment issues related to improving

the quality of the ASA 5505 fail-over feature are as follows:

1. Determine the ASA 5505 sub-systems which have relatively high failure mode

rates.

2. Forecast the expected occurrence of fail-over related failure modes for the ASA

5505.

3. Determine the failure modes, if any, that are increasing in frequency of occurrence

over time.

4. Identify new, previously unknown, fail-over related failure modes.

In order to monitor and assess the quality of the ASA 5505, the manufacturer has
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collected a data set of service requests that were submitted by customers to the man-

ufacturer’s technical support center. Each service request consists of an unstructured

(free-form text) customer description of a failure mode that occurred and a time-stamp.

The problem description poses the following knowledge engineering challenges: cus-

tomers can use different language to describe the same failure mode; the failure mode is

described using computer-network domain-specific terminology; duplicate or irrelevant

information. An actual customer problem description of an ASA 5505 fail-over issue

which illustrates these challenges is shown in Figure 4.1.

We have one ASA with 2 ISP connections and several site to site VPNs set-up to
other sites with ASAs. When we test failing over the VPNs to use the second ISP

connection the tunnels are not coming up. We have confirmed that outbound
routing fails over immediately.

Figure 4.1: Example service request for the ASA 5505

Monitoring and assessing product quality using the service request data involves the

following four sub-problems:

1. Failure Modes Definition: Determine the set of failure modes that we would

like to monitor for the product of interest

2. Failure Mode Quantification: Measure the daily occurrence of each failure

mode in the collected service requests. (The term quantification comes from re-

lated work [Forman et al., 2006] that addresses quantifying the occurrence of

problems in customer service centers.)

3. Time-series Analysis: Determine the nominal (expected) daily occurrence of

each failure mode and the deviation of the actual daily occurrence from its nominal

value.

4. Quality Metrics Computation: Define and compute a set of metrics for char-
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acterizing the occurrence of each failure mode.

The four sub-problems can be described more formally as follows:

First, we need to work with experts to identify the failure modes that we would like

to monitor. Let m denote the total number of failure modes to be monitored and cj be

the jth (j = 1, 2, ...,m) failure mode for the product of interest. This is sub-problem 1,

failure mode definition, described above.

We must then quantify the occurrence of each identified failure mode cj (j =

1, 2, ...,m) based on the received customer service requests. Let n be the total number

of service requests received for the particular product we would like to monitor and di

be the ith (i = 1, 2, ...n) service request received. If we assume that each service request

is reporting one product failure mode then we need to map each service request di ∈ D

to a corresponding failure mode c ∈ C as output. The failure mode quantification prob-

lem is to create the a mapping function, denoted Φ, and apply it in order to label each

service request di (i = 1, 2, ..., n) with the corresponding failure mode c ∈ C. This is

sub-problem 2, quantification, described above.

Once we have the time-history of each failure mode, the third sub-problem is to

compute the metrics for monitoring product quality from time-history of each failure

mode cj (j = 1, 2, ...,m). The specific metrics for monitoring the product failure modes

will vary depending on the problem under consideration and the product of interest.

The three categories or types of metrics that are generally useful for monitoring

product quality are as follows. First, we can monitor the actual quality of the products

in service, e.g. how many service requests were received for a particular product failure

mode. Second, we can measure the expected, or nominal, product quality for the product

of interest, e.g. how many service requests do we expect to receive for a particular

product failure mode today. Third, we can measure the deviation or the difference

between actual product quality and the expected product quality.
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If y
cj
t denotes the number of service requests with failure mode cj in day t, and l is

the number of days we are monitoring then the time-history of cj is

Y cj = {ycj1 , y
cj
2 , ..., y

cj
l } (4.1)

The calculation of the nominal and deviation quality metrics requires the nominal

and deviation components associated with each failure mode time-history. We assume

that the nominal occurrence of each failure mode can be characterized using three com-

ponents: level, trend, and seasonality. The level, L
cj
t characterizes the failure mode’s

mean daily occurrence, trend, T
cj
t characterizes the rate of change in this mean occur-

rence over time, and the seasonality, S
cj
t characterizes recurring cyclic patterns. If ȳ

cj
t

is the nominal occurrence for failure mode cj on day t, then

ȳ
cj
t = [L

cj
t + T

cj
t ]× Scj

t (4.2)

where L
cj
t , T

cj
t , and S

cj
t are the level, trend, and cyclicity of the failure mode cj on

day t. The time-history of the nominal component, Ȳ cj , is then defined as follows:

Ȳ cj = {ȳcj1 , ȳ
cj
2 , ..., ȳ

cj
l } (4.3)

The deviation,ỹ
cj
t , between actual occurrence of failure mode cj and the nominal

component ȳ
cj
t at time t. If ỹ

cj
t is the deviation component at time t, then

ỹ
cj
t = y

cj
t − ȳ

cj
t ,(j = 1, 2, ...,m). (4.4)
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and the time-series history of the deviation component is

Ỹ cj = {ỹcj1 , ỹ
cj
2 , ..., ỹ

cj
l },(j = 1, 2, ...,m). (4.5)

Procedural, the monitoring and assessment problem becomes: First, construct the

time-history Y cj for each failure mode cj (j = 1, 2, ...,m). Second, estimate the time-

history of the nominal component Ȳ cj . Three, determine the deviation component Ỹ cj

for each failure mode cj (j = 1, 2, ...,m). Four, compute the product quality metrics

from the actual, nominal, and deviation time-histories for each failure mode.

4.3 Literature Survey

The purpose of this section is to survey existing work related to product quality moni-

toring and assessment and motivate the need for a new multi-disciplinary approach. To

this end, the section is organized into three parts as follows. First, we discuss several

well-known approaches to quality monitoring and assessment that are currently used

during product design, development, and delivery. Next, we discuss other work that

addresses one or more of the four sub-problems defined in Section 4.2, but does not

explicitly address product quality monitoring and assessment. Lastly, we assess the ap-

plicability of the related work to the problem under consideration: quality monitoring

and assessment using unstructured service request data.

4.3.1 Existing Approaches to Product Quality Monitoring and Assessment

Existing approaches for product quality monitoring and assessment can be organized

into three different groups corresponding to where they fit in the product design, devel-

opment, and delivery process. During product design the objective of quality monitoring

and assessment is to minimize defects with the product’s design. Failure Modes and
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Effects Analysis (FMEA) ([Fox, 1993], [Teng and Ho, 1996]) is a well-known and widely

used technique for identifying different product failure modes and assessing the risk

associated with these failure modes. The FMEA process involves breaking the product

down into smaller functional sub-systems, identifying potential failure modes of these

sub-systems and their causes, determining the necessary actions that need to be taken

in order to resolve the failure mode, and finally assessing the risk associated with each

failure mode. The risk of each failure mode is represented by a risk priority number

(RPN) which is defined as the product of three quantities: severity of the failure mode

(S), difficulty of detection (D), and frequency of occurrence (O).

In addition to the FMEA there are several other well-known techniques for failure

mode and risk analysis. Fault tree analysis (FTA) [Lee et al., 1985] maps out the set of

events leading up to a failure mode’s occurrence using a tree constructed from boolean

logic gates. The resulting tree can be used to reason about the root cause of a failure

mode as well as monitor the system or product to detect potential failure modes before

they happen. The Structured What-If Technique (SWIFT) [Card et al., 2012] is a

systems-based risk identification technique that focuses on high-level processes and can

often be conducted more quickly than an FMEA or FTA. The SWIFT technique uses

structured brainstorming in combination with pre-defined prompts to examine risks of

different system failure modes.

Once the product design is finalized and the product is ready for development and

manufacturing, the objective of quality monitoring and assessment is to minimize vari-

ation in the manufacturing processes. Six Sigma [Harry and Schroeder, 2006] is a

well-known approach to minimizing process variation consisting of five distinct phases:

define, measure, analyze, improve, and control. The Six Sigma process provides a set

of qualitative tools for identifying the different process variables that need to be mon-

itored, and a set of statistical tools for monitoring these variables in order to detect

variations in quality.
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4.3.2 Related Work in Machine Learning and Time-Series Analysis

In the Section 4.2 we defined four distinct sub-problems—domain knowledge representa-

tion, quantification, monitoring, and assessment—related to product quality monitoring

and assessment. Related work that addresses these problems falls into two high-level

groups. The first group is work in data mining and machine learning that addresses the

domain knowledge representation and quantification problems. The second group is the

work in time-series analysis that addresses the monitoring and assessment sub-problems.

Within our area of interest, unstructured customer service data, there are two gen-

eral approaches to domain knowledge modeling and quantification. The first approach,

is to use machine learning algorithms to automatically generate a domain knowledge

model from the data. Generally this involves text clustering, such as TroubleMiner [Me-

dem et al., 2009] which uses hierarchical clustering to automatically categorize network

support cases based on the text in the customer problem descriptions. These clusters

are then reviewed by experts to identify interesting patterns. Text clustering has the

advantage of requiring relatively little human effort up-front in the data mining process.

However, this benefit is offset by its sensitivity to small linguistic differences in how a

customer describes a problem, which can cause unrelated support cases to be grouped

together, and similar support cases to be split across multiple clusters.

The second approach to quantification involves combining machine learning algo-

rithms with inputs from human experts. Several examples of this approach in the con-

text of customer service data are as follows. The Incident Categorization and Analysis

system [Forman et al., 2006] addresses the quantification of frequent issues in customer

support cases using a process that begins with a k-means clustering to create an initial

candidate set of issues. These issues are then manually refined by experts, and then

used as the prediction labels for categorizing incoming support cases. The Unstructured

Information Modeller system [Spangler and Kreulen, 2007] also addresses the quantifi-
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cation of frequent help desk issues but starts by having experts define important terms

and phrases. These frequent terms and phrases are used as attributes for creating an

initial clustering of the support cases. Human experts then refine this initial clustering

through deleting, merging, and splitting clusters. The final clustering is then automat-

ically applied to incoming data. The Netsieve system [Potharaju et al., 2013] addresses

the problem of tagging problem and resolution pairs in network support cases. Frequent

phrases in support cases are first manually mapped by human experts into a ontology

that relates customer problems and the actions taken by the support engineers to re-

solve the problem. This model is then applied to tag problems and solutions in new

support cases. Although experts can decipher complex technical vocabulary in order to

merge similar problems and separate clusters with dissimilar problems, this approach

is still largely data driven. The initial domain knowledge model is determined by the

structure of the data and not the underlying subject-matter domain. Consequently, the

results generally require a significant amount of post-processing before they can be used

to solve engineering problems.

Within the time-series analysis domain we will focus on a subset related work in the

area of Biosurveillance that involves the monitoring and assessment of medical data in

order to detect disease outbreaks and, consequently, involves many of the same issues as

the monitoring and assessment sub-problems discussed in Section 4.2. Biosurveillance

monitoring methods typically consist of two parts: a forecasting component which is

used to create a nominal (expected) model for the data, and a monitoring component

that raises an alert when the actual behavior significantly deviates from the nominal

model. A number of different approaches have been explored for implementing the

forecasting and monitoring components. The Early Aberation and Reporting System

(EARS) and BioSense [Lotze and Shmulei, 2008] systems developed by the Center for

Disease Control (CDC) use a moving average forecasting component combined with a

control chart monitoring component to monitor hospital records for disease outbreaks
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and bio-terrorism. The ESSENCE system [Lombardo et al., 2004] developed by the

Department of Defense (DOD) uses regression to forecast the next day‘s value and then

monitors the residuals (forecast error) using a control chart.

Google Flu Trends [Ginsberg et al., 2009] provides an approach to monitoring un-

structured data to predict influenza trends. The number of Google search queries related

to influenza is quantified using a linear model that relates the number of influenza related

physicians visits to the number of influenza related Google search queries. The parame-

ters to this model are learned by finding the combination of Google search queries that

fit historical Center for Disease Control (CDC) data for influenza historical CDC data.

The model is then applied to incoming Google search queries to provide a real-time

estimate of influenza cases.

4.3.3 Assessment of Related Work

Quality monitoring and assessment using unstructured customer data involves four dis-

tinct sub-problems: domain knowledge representation, quantification, monitoring, and

assessment (Section 4.2). The related work discussed above provides partial solutions to

each of these sub-problems, however, no single piece of related work addresses all four

sub-problems. In order to provide a comprehensive solution to the four quality moni-

toring and assessment sub-problems we need an integrated multi-disciplinary approach

that uses methods from engineering design, data mining, and time-series analysis.

Engineering design methods, in particular Failure Modes and Effects Analysis, pro-

vide a structured process for capturing and representing domain knowledge about a

product in a format that enables quality assessment. However, these tools are gen-

erally applied manually and not directly suitable to the unstructured service request

data involved in product quality monitoring and assessment. The work [Garcia et al.,

2006] that does address quality monitoring during product support involves using sen-

48



www.manaraa.com

sors to periodically measure product performance. The need for sensors to be installed

on the product in service limits the application of these methods to highly-specialized

low-volume products, such as wind turbines, and are therefore not generally suitable to

monitoring large number of products in the field.

While data mining provides machine learning techniques, such as K-Nearest Neigh-

bors clustering, that facilitate the automatic generation of a domain knowledge represen-

tation from data with a minimal up-front investment of human time and effort, the com-

plex technical vocabulary and domain knowledge in engineering application domains—

such as computer networks—makes it difficult to generate a useful domain knowledge

representation through clustering or frequent phrase extraction. Consequently, the re-

sults generated by these algorithms frequently require a significant amount of post-

processing before they can be used to address product design, development, and delivery

problems. The time-series analysis domain provides statistical methods for monitoring

time-series data. However, the application of these methods to monitor unstructured

data generally is not generally feasible due to massive computational requirements and

the need for large amounts of training data.

4.4 Theory: Representation-based Model for Product Quality Moni-

toring and Assessment

In order to structure and resolve the four sub-problems involved in quality monitoring

and assessment we apply the Integrated Meta-Representational Model developed in

Chapter 3. The use of representation enables these four sub-problems to be cleanly

separated into distinct layers where the appropriate engineering domains and associated

methods for resolving these sub-problems can be identified and applied. The External

and Outer layers of the IMRM represent the initial and goal state for problem under

consideration. The domain knowledge representation sub-problem, where we capture

the domain knowledge about the product, maps to the External layer. Likewise, the
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assessment sub-problem maps to the Outer layer because it satisfies the goal of product

quality monitoring and assessment. For the product quality monitoring and assessment

problem we need to get from the product quality metrics at the External layer to the

product quality assessment at the Outer layer. The abstract representation of the

service request data that enables quality monitoring and assessment is the nominal

and deviation components of each failure mode’s time-history. These components are

necessary to compute the static, nominal, and deviation metrics for monitoring product

quality. The quantification sub-problem maps to the Outside-In layer where we go from

the product failure modes at the External layer to the failure mode time-history at the

Internal layer. Similarly, the monitoring problem maps to the Inside-Out layer which

takes us from the failure mode time-histories at the Internal layer to the assessment at

the Outer layer.

Table 4.1 shows the layers, representational subject matters, domains, and methods

for the problem of product quality monitoring and assessment. In order to represent the

product domain knowledge at the External layer we have selected two tools from the

engineering design domain: the Functional Analysis System Technique (FAST) [Fox,

1993] for representing the function and form of a product and the Failure Modes and

Effects Analysis (FMEA) [Fox, 1993] method for identifying product failure modes.

From the data mining domain we have drawn upon three well-known machine learning

algorithms—decision trees, naive bayes, and support vector machines [Hastie et al.,

2009]—to learn the mapping function at the Outside-In for labeling each service request

with a corresponding failure mode. At the Internal layer, we use double exponential

smoothing [Chopra, 2007] to estimate the nominal component of each failure mode time-

history. At the Inside-Out layer we use a Shewart Control Chart [Lawson and Erjavec,

2001] to monitor the deviation component of each failure mode. The Outer layer uses

the same engineering design tools, FAST and FMEA, from the External layer in order

to assess product quality and make recommendations for quality improvement.
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Layer Subject Matter
Domains and Representational Methods/Tools

Product Design
and Development

Machine Learning Time Series Analy-
sis

External Product Failure
Modes

FAST and FMEA

Outside-In Machine Learning
Model for Failure
Mode Classifica-
tion

Decision Trees,
Naive Bayes,
Support Vector
Machines

Internal Time-Series Analy-
sis

Double Exponen-
tial Smoothing

Inside-Out Quality Monitor-
ing

Control Charts

Outer Quality Assess-
ment

FAST and FMEA

Table 4.1: Layer-Subject matter-representational tools/methods matrix for product
quality monitoring and assessment

Figure 4.2 shows the representation-based model resulting from the integration of the

methods and tools described above. The model is implemented by sequentially stepping

through each layer shown in Figure 4.2 as follows:

1. External layer: model the function and form of the product of interest using

a FAST diagram. For each major product component, perform a Failure Modes

and Effects Analysis (FMEA) to identify potential failure modes. Select a subset

of critical product failure modes from the FMEA to monitor and assess.

2. Outside-In layer: manually label a small subset of training data with the cor-

responding failure modes using the FAST and FMEA. Use the labeled data as

input to the naive bayes, decision trees, and Support Vector Machine learning

algorithms in order to learn the classification function. Select the most accurate

classifier and use it to label the complete customer service request data set.

3. Internal layer: use the labelled service request data to create a time-history for

each failure mode. The nominal component of each failure mode is estimated by

the forecast from the Exponential Smoothing method. The deviation component

of each failure mode is obtained by differencing the actual time-history and the
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Figure 4.2: Representation-based model for product quality monitoring and assessment

nominal component estimate.

4. Inside-Out layer: calculate the nominal metrics directly from the time-history

of the nominal component. Calculate the deviation metrics by applying a Shewart

control chart to the deviation component.

5. Outer layer: apply the assessment guidelines from the External layer to the

static, nominal, and dynamic metrics computed at the Inside-Out layer.

The comprehensive (step-by-step) implementation of the representation-based model

is provided in the following section (Section 4.5).

4.5 Application: Process Methodology for Product Quality Monitor-

ing and Assessment

In this section we describe the process methodology for implementing the representation-

based model for product quality monitoring and assessment developed in the previous

section. The process methodology is organized into five parts—External, Outside-In,

Internal, Inside-Out, and Outer–corresponding to five layers of the Integrated Meta-

Representational Model in Figure 4.2. For each layer we first identify the overall inputs

and outputs and the layer‘s role in creating a solution to the overall problem. We then
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describe the methods and techniques used at the layer to transform the inputs into

outputs. Lastly we present the implementation of each layer for the product quality

monitoring and assessment problem of interest. The methods and techniques at each

layer are illustrated using the quality monitoring and assessment problem described in

Section 4.2 for the ASA 5505 computer network security product.

4.5.1 External Layer: Domain Knowledge Modeling

The problem addressed at the External layer is collecting and representing the domain

knowledge about the product for which we would like to monitor and assess. This

involves modeling both how the product works as well as the different product failure

modes. To this end, we use the Functional Analysis System Technique (FAST) [Fox,

1993] method to represent the relationships between product functionality and product

sub-systems. The Failure Modes and Effects Analysis (FMEA) [Fox, 1993] is then used

to collect and organize the failure modes associated with each product sub-system.

The process for applying the FAST and FMEA methods to model the domain knowl-

edge for the product is as follows:

1. Determine the function and form relationships for the selected product using the

Functional Analysis System Technique (FAST) [Fox, 1993]. The FAST dia-

gram is created as follows: a) Write the primary function of the product on the

right side of the diagram; b) Break the product down into logical elements or sub-

systems. Write these sub-systems on the left side of the diagram; c) Work from

both ends of the diagram, by adding the relevant product sub-functions, until the

primary function and sub-systems are connected.

2. Perform a Failure Modes and Effects Analysis (FMEA) [Fox, 1993] for each

product sub-system identified in the FAST diagram from Step 1. The FMEA

process is as follows: a) Work with product experts—typically these experts would
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be selected from the product design, development, and delivery team(s) for the

product of interest—to determine the potential failure modes for each product

sub-system identified in the FAST diagram; b) Describe the symptoms (effects)

associated with each failure mode; c) Characterize the risk associated with each

failure mode using a Risk Priority Number (RPN). The RPN is calculated as the

product of the severity (S), frequency of occurrence (O), and difficulty of detection

(D) rated on an 8 point scale; d) Determine the appropriate actions to take in

order to resolve the failure mode; e) Organize the results into an FMEA table as

shown in Figure 4.4.

3. Determine the set of failure modes to use for monitoring and assessing product

quality. The process for selecting the failure modes to monitor is as follows: a)

Select a value for m, the total number of failure modes that we would like to

monitor; b) Use the RPN values from the FMEA to rank the failure modes; c)

Select the top m failure modes corresponding to the m largest RPN values.

4. Define the metrics for monitoring the selected failure modes. While the specific

metrics can vary depending on the product of interest, there are three general types

of metrics for monitoring product quality. First, we want to measure the overall

quality of the product, e.g. the total number of times a failure mode occurs. We

refer to this type of quality as static because it is not a function of time. Second,

we want to measure the nominal or expected occurrence for a particular failure

mode over time. Third, we want to measure how the actual occurrence is deviating

from this nominal occurrence.

We now illustrate the implementation of the External layer for our problem of mon-

itoring and assessing product quality for the ASA 5505 network security device. Figure

4.3 shows the FAST diagram for the fail-over feature of the ASA 5505. Fail-over is

implemented by three sub-systems: “fail-over link”, “stateless fail-over”, and “stateful
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Figure 4.3: FAST diagram for ASA5505 fail-over sub-system

fail-over”. The stateless fail-over sub-system realizes the functionality related to main-

taining an identical device configuration across the two ASA 5505 products and ensures

that the backup will operate identically to the primary when/if fail-over occurs. The

stateful fail-over sub-system realizes the functionality related to preserving the state,

e.g. connections and IP addresses, of the computer network when the fail-over occurs

and makes the fail-over process transparent to the end-users on the network. Finally,

the fail-over link sub-system realizes the functionality related to enabling communica-

tion between the primary and backup ASA 5505 and triggers fail-over in the case that

the primary ASA 5505 experiences a failure.

The Failure Modes and Effects Analysis (FMEA) identified 20 key failure modes for

the three ASA 5505 sub-systems related to fail-over. For each of the 20 failure modes,

shown in Figure 4.4, we worked with experts to determine the values for S, D, and O

in order to calculate a Risk Priority Number (RPN). We then selected the 10 failure

modes with the highest RPN values as the failure modes to monitor. Table 4.2 contains
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Figure 4.4: FMEA for ASA 5505 fail-over sub-system

a brief description of the selected failure modes.

For this problem we define two static metrics, absolute and relative occurrence, for

measuring how often a particular failure mode has occurred across all service requests

received. In order to measure the nominal occurrence or expected daily occurrence of

each failure mode we use the mean occurrence (failure modes/day) and the growth or

rate of change in this mean occurrence over time (failure modes/day).

The deviation metrics, measure the deviation of the actual daily occurrence from

the nominal (expected) daily occurrence. We use two metrics for measuring when this

deviation is significantly large. The absolute deviation metric measures the total number

of days when a failure mode’s occurrence significantly deviates from the nominal. The

relative deviation metric measures number of days that the deviation component is

larger than the acceptable user-defined threshold relative to the total number of days
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Failure Mode Description

Both active Fail-over occurs when the
primary device is still ac-
tive

Configuration
sync

The software configuration
of the secondary device
does not match the pri-
mary device

No Switch-over The fail-over does not oc-
cur when the primary de-
vice fails

Fail-over
communication

Normal traffic is being
routed over the fail-over
link

Fail-over link The fail-over cable con-
necting the primary and
secondary devices is expe-
riencing an error

Hardware The hardware fail-over
controller is not operating
correctly

Software upgrade The user needs to upgrade
the software version on the
secondary device

License The software license of the
secondary device does not
match the primary device

Memory Contents of the primary
device‘s main memory was
corrupted during failover

VPN VPN sessions were discon-
nected on fail-over

Table 4.2: Failure modes for the ASA 5505 fail-over feature
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monitored.

4.5.2 Outside-In Layer: Machine Learning

The Outside-In layer addresses the problem of labeling each service request with a

corresponding failure mode from the set of failure modes identified at the External

layer for the ASA 5505 fail-over feature the failure mode labels are shown in Table 4.2.

The failure mode labels are then used at the Internal layer to aggregate the service

requests by failure mode and create the time-series of the occurrence of each failure

mode.

Let di (i = 1, 2, ..., n) be the set of service requests collected over a time-horizon of l

days. Each service request di is a tuple consisting of two values:

di , (πi, τi). (4.6)

where πi is a text description of the failure mode that is being experienced by the

customer and τi is the time-stamp indicating the day t (t = 1, 2, ..., n) that di was

received.

For each service request di we must determine the appropriate failure mode label

from the set of failure modes cj (j = 1, 2, ...,m). We refer to the failure mode label

for di as fi where the value of fi can be any one of the m failure modes that we are

monitoring:

fi ∈ {c1, c2, ..., cm}. (4.7)

In order to determine fi (i = 1, 2, ...n) we create a classification function that maps
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each service request di (i = 1, 2, ..., n) to a corresponding failure mode cj (j = 1, 2, ...m):

Φ : di → {c1, c2, ..., cm}. (4.8)

The classification function, Φ, is created using a machine learning process shown in

Figure 4.5. First, we create a training/test data-set of service requests by manually

determine the failure mode label for a small sample of service requests. This labeled

data is then split into separate training and test sets. The training set is used as input

to the machine learning algorithms for learning the classification function. The test set

is used to evaluate the performance of the resulting classification functions. The optimal

classification function is then selected and used to label the complete service request

data-set.

Figure 4.5: Machine learning work-flow

Variable Description

n̄ the number of service requests in the
training/test data-set

di the collected service requests

cj the jth failure mode being moni-
tored

f̄i manually identified failure mode la-
bel for di

Φcj classification function for failure
mode cj

Φ
cj
optimal optimal classification function for

failure mode cj
f̂i predicted label for di
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Training/Test Data-Set

The training/test data-set consists of n̄ service requests randomly sampled from di

(= 1, 2, ..., n). For each problem description, π̄i (i = 1, 2, ..., n̄), in this random sample

we associate a failure mode label, f̄i, that best describes the problem being described

by the customer. Let d̄i (= 1, 2, ..., n̄) denote the labelled service request:

d̄i = (π̄i, f̄i). (4.9)

The failure mode label f̄i for each service request d̄i (i = 1, 2, ..., n̄) are manually

determined by subject matter experts from the product engineering team. The expert

first reads the problem description π̄i and uses the FMEA created in the External

layer to decide the most appropriate failure mode from the set of failure modes cj

(j = 1, 2, ...,m). Problem description that do not correspond to any failure mode cj

(j = 1, 2, ...,m) are labeled with a “miscellaneous” label. We use c0 to denote the

“miscellaneous” label.

Machine Learning

The labeled service requests d̄i (i = 1, 2, ..., n̄), is the input to machine learning algo-

rithms for the purposes of creating the classification function Φ for mapping customer

problem descriptions to failure modes. The first step in applying these algorithms is to

transform each text problem description π̄i into a vector of numerical features, X̄i, that

can be processed by the machine learning algorithms.

Let V be the set of distinct words used in the set of problem descriptions π̄i (i =

1, 2, ..., n̄), vj be the jth word in V , and |V | be the total number of words in V . We can

then represent each service request as a vector of |V | features. The feature vector corre-
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sponding to service request π̄i is denoted as X̄i where the elements x̄ij (j = 1, 2, ..., |V |)

are defined as follows:

x̄ij ,

 1 if vj ∈ π̄i

0 otherwise
(4.10)

The machine learning algorithms uses labeled training instances (X̄i, f̄i) to create

the classification function Φ. The performance of machine learning algorithms can vary

significantly across different data-sets [Caruana and Niculescu-Mizil, 2006]. Therefore,

in order to determine the best algorithm for the customer service request data we

evaluate three well-known algorithms: naive bayes, decision trees, and support vector

machines [Witten and Frank, 2005].

The algorithms are applied using a k-fold cross-validation process [Witten and Frank,

2005] where the training/test set (X̄i, f̄i) (i = 1, 2, ..., n̄) is partitioned into k equally

sized sets of n̄
k (typically k = 10). The naive bayes, decision trees, and support vector

machines algorithms are then applied as follows:

1. Pick one of these k sets as a test set and use the remaining (k − 1) sets as the

training sets.

2. Use the k−1 training sets as input to the machine learning algorithms in order to

learn the classification function Φ. Evaluate the resulting classification function

Φ on the test set.

3. Repeat steps 1 and 2, k times, each time with a different test set.

The support vector machines algorithm is described below in order to illustrate the

application of these methods in the context of the service request data-set. The support
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vector machines (SVM) algorithm ([Cortes and Vapnik, 1995], [Hastie et al., 2009]) is a

statistical learning method that uses a separating hyper-plane as the decision boundary

for classifying a data-set into two groups or classes. SVMs have a strong theoretical

basis in structural risk minimization [Vapnik and Chervonenkis, 1971] and generally

perform well in high-dimensional feature spaces, such as a text classification, where it

is necessary to balance model complexity and over fitting.

Let Φcj (Xi) denote the separating hyper-plane for failure mode cj . The hyper-plane

is given by:

Φcj (Xi) = wcj ·Xi + bcj , (4.11)

where wcj is a weight vector and bcj is a bias factor.

The value of Φcj (Xi) is defined to be positive for all feature vectors Xi with failure

mode label cj and negative for all other failure modes labels. The weight vector wcj

and bias bcj are learned from the labeled training instances d̄i (i = 1, 2, ..., n̄).

In order to compute wcj and bcj we assign Ȳij to be a binary label that corresponds

to whether the training instance (X̄i, f̄i) is labeled with failure mode label cj .

Ȳij ,


+1 if f̄i = cj

−1 otherwise

(4.12)

One of the key ideas in SVMs is that only a subset of the training instances, called

support vectors, are used to compute the values for wcj and bcj . These support vectors

are chosen in order to maximize the margin between the two classes (Ȳ = +1 and Ȳij =

−1). By introducing a set of Lagrange multipliers α
cj
i (i = 1, 2, ..., n̂) the problem of

finding these support vectors can be formulated as a constrained quadratic optimization
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problem:

Maximize W (αcj ) =

n̄∑
i=1

α
cj
i −

1

2

n̄∑
i=1

n̄∑
k=1

α
cj
i α

cj
k ȲijȲkjX̄i · X̄k (4.13)

Subject to: (4.14)

α
cj
i ≥ 0, (i = 1, 2, ..n̄) (4.15)
n̄∑

i=1

α
cj
i Ȳ

cj
ij = 0 (4.16)

The support vectors are the set of training instances (X̄i, f̄i) for which α
cj
i > 0. The

weight vector is then computed from the support vectors as follows:

wcj =
n̄∑

i=1

α
cj
i X̄iȲ

cj
i . (4.17)

There are a number of different algorithms for solving the quadratic programming

problem in Equation 4.13. In this work we use the Sequential Minimal Optimization

algorithm in the Weka workbench [Witten and Frank, 2005].

Evaluation

For each failure mode, cj , the k-fold cross-validation process produces a set of k classifiers

for each machine learning algorithm. Each classifier, Φcj , determines if a particular

service request di should be labeled with failure mode cj . We evaluate the performance

of these classifiers using the unseen test set of the labeled service requests to determine

the optimal algorithm, i.e. SVM, for the service request data-set.

Performance of the classification function Φcj is evaluated using the F1 score [Witten

and Frank, 2005] which balances precision (correctness) with recall (completeness). For
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the ith fold (i = 1, 2, ..., k) of failure mode cj : let TP
cj
i be the number of true positives,

FP
cj
i be the number of false positives, TN

cj
i be the number of true negatives, and FN

cj
i

be the number of false negatives.

The precision p
cj
i and recall r

cj
i are then given by

p
cj
i =

TP
cj
i

TP
cj
i + FP

cj
i

, (4.18)

and

r
cj
i =

TP
cj
i

TP
cj
i + FN

cj
i

. (4.19)

The F1 score for the classification function Φcj is the average of the F1 scores over

the k-folds [Witten and Frank, 2005]:

F1cj =
1

k

k∑
i=1

2p
cj
i r

cj
i

p
cj
i + r

cj
i

. (4.20)

Classification

Let Φ
cj
optimal be the classification function with the highest F1cj score for failure mode

cj . The process for using Φ
cj
optimal (j = 1, 2, ...,m) to determine the failure mode label

for each service request is as follows:

1. Create a feature vector Xi for each service request problem description πi (i =

1, 2, ...n). The value of xij is given by Equation 4.10.

2. For each service request di (i = 1, 2, ..., n) compute Φ
cj
optimal(Xi) (j = 1, 2, ...,m).

3. f̂i is the corresponding failure mode label for di. For the SVM classifier, the value
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of f̂i is the failure mode cj such that the sign of Φ
cj
optimal(Xi) is positive. The value

of Φ
cj
optimal(Xi) will be negative for all other values of cj j = 1, 2, ...,m.

The data set collected by the product manufacturer consisted of 100,000 customer

service requests from a four month period. Each service request in the data set consisted

of: (1) a time-stamp indicating when the service request was opened, and (2) a free-form

text problem description provided by the customer.

The free-form text problem description varied from one to two paragraph in length.

The collected data set contained support cases involving a wide range of ASA 5505

functionality (e.g. authentication, intrusion detection, fail-over). To address this issue

we created a two level classifier. The first level filtered out the support cases that

were not related to the fail-over function of the ASA 5505. The second level labeled

the fail-over related support cases with the corresponding failure mode from the ten

failure modes that were selected to monitor. Support cases involving a failure modes

not related to the ten failure modes being monitored were labeled as “Misc”.

The classifiers were trained using two sets of 1,000 training instances. The first set

was randomly sampled from the 100,000 collected support cases and labeled by the

product engineering team with binary label indicating if the support cases was related

to the fail-over feature or not. The resulting classifier was then applied to obtain the set

of fail-over related support cases. The second set of training instances were randomly

sampled from the fail-over related support cases and were labeled with a corresponding

failure mode by the product engineering team. The FAST and FMEA models for the

ASA 5505 were used as a reference when labeling the fail-over related support cases.

The classification function generated using the support vector machines algorithm

outperformed the naive bayes and Decision Tree classification functions by a small

margin (Table 4.3). All three algorithms had excellent accuracy (98 - 99 %) for the

first level classifier, determining if a service request was related to the fail-over feature.
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This was largely due to the word “fail-over” being an excellent predictor if a particular

service request was related to the fail-over feature. Accuracy dropped significantly (67

- 72 %) at the second level of classification where the service requests were labeled with

a corresponding failure mode.

Classification
Algorithm

Level 1
(Fail-over)

Level 2
Accuracy
(Failure
Mode)

Support
Vector
Machines

99.6 % 72.3 %

Decision
Trees

99.2 % 70.6 %

Naive
Bayes

98.4 % 67.6 %

Table 4.3: Evaluation of the support vector machines, naive bayes, and Decision Tree
Classifiers

Out of the 100,000 collected support cases, 16,127 were related to the ASA 5505

fail-over feature. The occurrence of the ten failure modes within these 16,127 fail-over

related cases was separated into high and low occurrence failure modes. The three most

frequent failure modes “configuration sync”, “fail-over link”, and “license”, accounted

for over 60% of the total number of fail-over related support cases. In contrast, the less

frequent failure modes such as “memory” only accounted for 1% of the total support

cases. This large difference between the high-frequency and low-frequency failure modes

is partially due to the high-frequency failure modes covering broader problems.

4.5.3 Internal Layer: Time-Series Analysis

The Internal layer transforms the labeled service request data into time-series data that

can be used for quality monitoring and assessment. For each failure mode we create

three different time-series: the actual daily occurrence, the nominal daily occurrence,
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and the daily deviation between the actual and nominal occurrence. These three time-

series are then used at the Inside-Out layer to compute the desired quality metrics.

The overall process for creating the actual, nominal, and deviation time-series is

shown in the flow chart in Figure 4.6. The aggregation step uses the labels from the

Outside-In layer to create the time-series of each failure mode‘s daily occurrence. Next,

we use time-series analysis in order to forecast the nominal occurrence of each failure

mode from the time-series of the failure mode’s actual occurrence. Finally, the devi-

ation for each day is computed by differencing the values for the actual and nominal

occurrence.

Figure 4.6: Time-series analysis work-flow

Variable Description

cj the jth failure mode being
monitored

di the ith service request

f̂i the predicted failure mode la-
bel for di

y
cj
t occurrence of failure mode cj

on day t

ȳ
cj
t nominal occurrence of failure

mode cj on day t

ỹ
cj
t deviation between y

cj
t and ȳ

cj
t

Aggregation

The aggregation process, shown in Figure 4.7, for creating the time-series of each failure

mode‘s occurrence consists of two steps: mapping and counting. During the mapping

step, each of the n service requests is mapped to a l-by-m matrix corresponding to the

l days in the time-horizon of interest and the m failure modes we are monitoring. Let
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Figure 4.7: Aggregation process for creating the time-series of each failure mode

D
cj
t be the set of service requests for failure mode label cj and time stamp t. If f̂i and

τi are the failure mode label and time-stamp associated with service request di, then

D
cj
t , {di : (f̂i = cj) ∧ (τi = t)}. (4.21)

We then count the number of service requests associated with failure mode label cj

that were received on day t in order to create the time-series of each failure mode’s

occurrence. Let y
cj
t be the total number of times failure mode cj occurred on day t.

The value of y
cj
t is given by

y
cj
t , |Dcj

t |, (4.22)

where |Dcj
t | is the size of D

cj
t .
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Figure 4.8: Example of the weekly seasonality in the service request time-series

Forecasting

The nominal occurrence of failure mode cj is the typical number of service requests

with label f̂i = cj we would expect for any particular day t based on the historical

occurrence of that failure mode. Figure 4.8 shows the actual occurrence time-series of

a representative failure mode. In this time-series we observe that there is a recurring

weekly pattern in the number of service requests for the ASA 5505.

The data has a weekly cyclic pattern of seasonality for the following reason. During

the work week (Monday - Friday) customers generally report problems the same day

that they occur. However, failures that occur on the weekend (Saturday and Sunday)

are not reported until the beginning of the following week (Monday). Consequently,

there is a weekly cyclic pattern in the collection of SRs as seen in Figure 4.8.

Let ȳ
cj
t denote the forecast for the nominal occurrence of failure mode cj on day

t. Since the failure mode time-series data has seasonality we use a level, trend, and

seasonality corrected exponential smoothing model ([Bowerman et al., 2004], [Chopra,

2007]) for creating the forecast ȳ
cj
t (t = 1, 2, ..., l). The exponential smoothing method

was selected over other well-known forecasting techniques such as ARIMA [Bowerman

et al., 2004] because its simplicity makes it relatively straightforward to implement and

tune for a data-set. Furthermore, exponential smoothing has been shown to be effective

in BioSurveillance time-series forecasting problems [Lotze and Shmueli, 2009], which are

similar to our quality monitoring problem.

The exponential smoothing method [Chopra, 2007] consists of three factors: level,
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trend, and seasonality. The forecast for day t is given by:

ȳ
cj
t = (L

cj
t−1 + T

cj
t−1)S

cj
t−1−p. (4.23)

Note that in the reference [Chopra, 2007] the forecast equation is given for the time

period t+1, however, in this work we have adjusted the forecasting equations to the time

period t. This adjustment was made because we are using the exponential smoothing

methods to estimate the nominal component for each time period t (t = 1, 2, ..., l); we

are not forecasting into the future, i.e. t+ 1.

The estimate L
cj
t for the level, the estimate T

cj
t for the trend, and the estimate S

cj
t

for the seasonality at time t for failure mode cj are then updated based on y
cj
t as follows:

L
cj
t = αcj

y
cj
t

S
cj
t−p

+ (1− αcj )(L
cj
t−1 + T

cj
t−1) (4.24)

T
cj
t = βcj (L

cj
t − L

cj
t−1) + (1− βcj )T cj

t−1 (4.25)

S
cj
t = γcj

y
cj
t

L
cj
t

+ (1− γcj )Scj
t−p (4.26)

where p is the periodicity of the seasonality associated with the failure mode time-series

and αcj , βcj , γcj are smoothing constants that are used to minimize the forecast error.

The process for using the exponential smoothing equations to forecast the nominal for

a particular failure mode cj consists of three steps as follows:

1. Initialization: set the initial the values for level, trend, and seasonal factors.

2. Tuning: determine the optimal values for the smoothing constants in order to

minimize the forecast error.

3. Forecasting: compute ȳ
cj
t over the time-horizon of interest.
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Each of the three steps—initialization, tuning, and forecasting—are discussed in detail

below.

Initialization

The initial level and trend values are computed directly from the actual time-series for

failure mode. Let L
cj
0 and T

cj
0 denote the initial values for the level and trend of failure

mode cj . These values are set using least squares regression formula [Bowerman et al.,

2004] given below:

L
cj
0 =

∑l
t=1 y

cj
t − T

cj
0

∑l
t=1 t

l
(4.27)

T
cj
0 =

l
∑l

t=1(y
cj
t )(t)− (

∑l
t=1 y

cj
t )(

∑l
t=1 t)

l(
∑l

t=1(t2)− (
∑l

t=1 t)
2)

(4.28)

The initialization of the seasonal factors requires that we compute the average sea-

sonal factor for each of the p days in the recurring weekly cyclic pattern. These initial

seasonal factors are denoted as S
cj
t (t = 1 − p, 2 − p, ..., 0). When computing these

average seasonal factors we use the simplifying assumption that all of the failure modes

have the same reporting delay and, therefore, have the same seasonal factors. This

simplification enables us to compute one set of these average seasonal factors from the

aggregated occurrence of all failure modes and then use them for each failure mode cj

(j = 1, 2, ...,m).

Let yt be the aggregated occurrence of all m failure modes at time t:

yt ,
m∑
j=1

y
cj
t . (4.29)

71



www.manaraa.com

We then deseasonalize yt using an averaging process [Chopra, 2007] that removes

the recurring cyclic fluctuations. Let y′t denote the deseasonalized value of yt. When p

is odd (in our case p = 7 corresponding to weekly seasonality), y′t is given by Equation

4.30 below:

y′t =

[t+bp/2c]∑
i=[t−bp/2c]

yi
p

. (4.30)

Since this averaging process requires p
2 days of historical data in order to calculate the

deasonalized value of any particular day, we compute y′t starting after the first complete

seasonal cycle (t = p+ 1, p+ 2, ..., l).

We then regress y′t (t = p + 1, p + 2, ..., l) [Bowerman et al., 2004] to obtain the

estimates for the level and trend of the deseasonalized time-series:

L′ =

∑l
t=p+1 y

′
t − T ′

∑l
t=p+1 t

l − p
(4.31)

T ′ =
(l − p)

∑l
t=p+1(y′t)(t)− (

∑l
t=p+1 y

′
t)(

∑l
t=p+1 t)

(l − p)(
∑l

t=p+1(t2)− (
∑l

t=p+1 t)
2)

(4.32)

The estimate for the deseasonalized occurrence, denoted as ȳ′t, is then obtained from

the line of regression given below:

ȳ′t =
(4.32,4.31)

L′ + T ′t. (4.33)

The seasonal factor at time t, denoted as S̄t, is the ratio of the actual occurrence yt
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to regressed deseasonalized occurrence ȳ′t:

S̄t ,
4.33

yt
ȳ′t

. (4.34)

The average seasonal factors, St (t = 1−p, 2−p, ..., 0), are then computed as follows:

St =
4.34

1

bl/pc

bl/pc∑
i=1

S̄(t+ip). (4.35)

Finally, because we are using the same set of seasonal factors for all failure modes

cj ,

S
cj
t = St (t = 1− p, 2− p, ...., 0)(j = 1, 2, ...,m). (4.36)

Tuning

The smoothing constants αcj , βcj , γcj are used to tune the exponential smoothing

method for a particular data-set. These constants are set separately for each failure

mode cj (j = 1, 2, ...,m) and are optimized in order to minimize the forecast error.

The smoothing constants are optimized in three steps. First, we set each smoothing

constant to a seed value between (0,1), e.g. 0.05, and compute the forecasts for t =

1, 2, ..., l. We then compute the forecast error, εcj , for t = 1, 2, ..., l:

εcj =
l∑

t=1

(ȳ
cj
t − y

cj
t )2. (4.37)

The values of αcj , βcj , γcj are then adjusted to minimize εcj . This problem can be

formulated as a non-linear programming problem and solved using Microsoft Excel, R
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[R Development Core Team, 2008], or a number of other software tools.

Forecasting

It is important to note that we are using forecasting to create an estimate of y
cj
t (t =

1, 2..., l), we are not forecasting future values past the time-horizon of interest (t =

1, 2..., l). The process for creating these estimates is as follow:

1. Compute ȳ
cj
t for t = 1 using Equation 4.23 with initial values for L

cj
0 , T

cj
0 , and

S
cj
1−p.

2. Update the values for L
cj
t , T

cj
t , and S

cj
t for t = 1 using Equations 4.24, 4.25, and

4.26 with the optimized values for smoothing parameters and the actual occurrence

y
cj
t .

3. Repeat Steps 2 and 3 for t = 2, 3, ..., l.

Deviation

ỹ
cj
t is the deviation between the actual and the nominal (expected) values of failure

mode cj on day t:

ỹ
cj
t ,

(4.22,4.23)
y
cj
t − ȳ

cj
t . (4.38)

When the value of the deviation is positive it means that there were more service

requests for that particular day then would be expected. Likewise, when the deviation

is negative, it means that there were less service requests then expected.
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4.5.4 Inside-Out layer: Quality Metrics

The Internal layer provides the failure-mode time-series for quality monitoring. The

problem addressed at the Inside-Out layer is computing the quality monitoring metrics

from these failure-mode time-series. In this work we compute three sets of metrics:

static, nominal, and deviation. These metrics are then used at the Outer layer to assess

product quality.

Figure 4.9 shows the process for computing the static, nominal, and deviation met-

rics. The static and nominal metrics for a particular failure mode cj (j = 1, 2, ..,m)

are computed directly from their respective time-series. The deviation metrics for a

particular failure mode cj (j = 1, 2, ..,m) are computed using the total number of days

where there is a significant large value in the failure mode‘s deviation time-series. In

order to determine if any particular value in the deviation time-series is significantly

large, we use a Shewart control chart applied to the time-series.

Figure 4.9: Inside-Out layer: computation
of the quality metrics

Variable Description

cj the jth failure mode being
monitored

y
cj
t occurrence of failure mode cj

on day t

ȳ
cj
t nominal (forecasted) occur-

rence of failure mode cj on day
t

ỹ
cj
t deviation between y

cj
t and ȳ

cj
t

˜UCL
cj

upper control limit for devia-
tion of cj

Ωcj set of days with abnormal de-
viation for cj

F
cj
abs absolute occurrence of cj
F

cj
rel relative occurrence of cj
µcj mean occurrence of cj
δcj growth in occurrence of cj
A

cj
abs absolute number of days

where ỹ
cj
t was abnormal

A
cj
rel relative number of days where

ỹ
cj
t was abnormal
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Static Metrics

We use two static metrics to characterize the total occurrence of a failure mode cj

(j = 1, 2, 3, ...,m) over the time horizon of l days: absolute occurrence and relative

occurrence.

We compute the absolute occurrence, F
cj
abs, as the cumulative or total occurrence of

failure mode cj over the time horizon of l days:

F
cj
abs ,

l∑
t=1

y
cj
t . (4.39)

In order to compare the absolute occurrence of different failure modes we normalize

F
cj
abs. Let Fabs be the cumulative or total number of occurrence of all m failure modes

over the time horizon of l days:

Fabs ,
m∑
j=1

l∑
t=1

y
cj
t , (4.40)

where y
cj
t is given by Equation 4.22.

F
cj
rel, the normalized occurrence of failure mode cj relative to the total occurrence of

all other failure modes over the time horizon, is given by:

F
cj
rel ,

F
cj
abs

Fabs
=

(1,2)

∑l
t=1 y

cj
t∑m

j=1

∑l
t=1 y

cj
t

. (4.41)
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Nominal Metrics

The nominal metrics characterize the typical daily occurrence of each failure. For each

failure mode cj , we compute the mean daily occurrence and the average growth (trend)

of the daily occurrence from the nominal time-series ȳ
cj
t (t = 1, 2, 3, ..., l).

Let µcj denote the mean or average of the nominal daily occurrence of failure mode

cj over the time-horizon of l days:

µcj ,

∑l
t=1 ȳ

cj
t

l
, (4.42)

where ȳ
cj
t is given by Equation 4.23.

Let δcj denote the rate of change (growth) of the nominal daily occurrence in failure

mode cj over the time horizon of l days. We compute δcj as the slope obtained by

regressing ȳ
cj
t (t = 1, 2, ..., l) as follows:

δcj ,
l
∑l

t=1(ȳ
cj
t )(t)− (

∑l
t=1 ȳ

cj
t )(

∑l
t=1 t)

l(
∑l

t=1(t2)− (
∑l

t=1 t)
2)

. (4.43)

Deviation Metrics

The deviation metrics characterize how the actual occurrence of each failure mode de-

viates from the nominal. If ỹ
cj
t (t = 1, 2, 3, ..., l) is the time-series of the deviation

between the actual occurrence and nominal (expected) occurrence of failure mode cj ,

then we first determine the set of days for which the value of ỹ
cj
t is abnormally large as

determined by the control chart described below.

We use a Shewhart Control Chart [Lawson and Erjavec, 2001] to set the upper

threshold for distinguishing between normal and abnormal values in the deviation time-
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series ỹ
cj
t (t = 1, 2, ..., l). Typically a Shewart Control Chart consists of a center line

that represents the mean value of the time-series and two other horizontal lines, called

the upper control limit (UCL) and the lower control limit (LCL) which define the upper

and lower threshold for normal values. For the purposes of quality monitoring where

we are interested in detecting increases in the deviation, i.e. more failures then the

nominal, we only compute the UCL.

The value for the UCL threshold is set based on the mean and standard deviation

of the time-series during a training period where there are no days where the deviation

time-series is abnormally large. This training period is manually identified by subject

matter experts who can assess if a particular deviation value, ỹ
cj
t , is abnormal.

Let µ̃cj and σ̃cj denote the mean and standard deviation, respectively, of the devi-

ation time series ỹ
cj
t during the training period. Then, ˜UCL

cj
, the upper control limit

for the deviation time-series ỹcj is given by

˜UCL
cj , µ̃cj + kσ̃cj . (4.44)

The value of k is set so that the probability that an observed value would fall outside

the control limits is very small. In this work we use a three standard deviation limit

(k = 3) for the upper control limit which provides a 99.865 % probability that a value

larger than ˜UCL
cj

is abnormal [Lotze and Shmueli, 2009].

Ωcj is the set of days where deviation of cj is larger than the corresponding upper

control limit ˜UCL
cj

:

Ωcj , {t|ỹcjt > ˜UCL
cj}. (4.45)
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The absolute deviation, A
cj
abs, is the total number of days in the set Ωcj :

A
cj
abs , |Ω

cj |. (4.46)

A
cj
rel is the number of days where failure mode cj has a significant deviation normal-

ized over the time horizon l:

A
cj
rel ,

A
cj
abs

l
. (4.47)

Table 4.4 shows the complete set of static, nominal, and dynamic quality metrics

for the ten critical ASA 5505 fail-over related failure modes. The use of these metrics

to monitor and assess the quality of the ASA 5505 fail-over feature is discussed in

Section 4.6. In order to illustrate the metrics for the ASA 5505, we will discuss a subset

three high-frequency failure modes (“license”, “VPN”, “configuration sync”) and one

low frequency failure mode (“software upgrade”).

The mean occurrence varied significantly between the ten fail-over failure modes

being monitored. The four high-frequency failure modes had a mean occurrence between

seven and ten failures per a day. The other six, low-frequency, failure modes occurred

approximately one time per a day. The growth for all ten failure modes was very small

during the monitoring period (between 0.0103 and −0.003 failures per day). Figure

4.10 illustrates the mean occurrence and growth metrics for three of the high-frequency

failure modes (“license”, “VPN”, “configuration sync”) and one low-frequency failure

mode (“software upgrade”). The small value for the growth metric indicates that the

quality of the ASA 5505 fail-over feature is not changing over time.

Figure 4.10 illustrates the deviation time-series and corresponding control chart for

four ASA 5505 failure modes (“license”, “VPN”, “configuration sync”, and “software
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Figure 4.10: Nominal and Deviation metrics for the (A) ASA 5505 license, (B) VPN,
(C) configuration sync, and (D) software upgrade failure modes

upgrade”). The majority of the deviations in product quality (18 out of the 22 total

occurrence of deviation across all failure modes) were for failure modes with a mean

occurrence of approximately one failure mode per a day such as “fail-over communi-

cations” and “both active”. For these failure modes, it is likely that the sparseness of

the historical data resulted in an artificially low control chart threshold. None of the

failure modes being monitored had a relative deviation value larger than 4% of the total

number of days monitored.

4.5.5 Outer Layer: Quality Assessment

The Outer layer is where product quality is assessed based on the metrics from the

Inside-Out layer. This assessment consists of two parts. First, we develop a set of
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guidelines for using the metrics to assess product quality. For each set of quality met-

rics, we then apply the guidelines to the monitoring results from Inside-Out layer and

determine the necessary product design, product development, and product delivery

actions, if any, that need to be taken for each sub-system in order to improve product

quality.

We now illustrate the implementation of the Outer layer for the problem of monitor-

ing and assessing product quality for the ASA 5505 network security device. The static

quality metrics enable the assessment of the overall quality of the different product sub-

systems/components. In product design, the assessment of the static metrics enables

the identification of low-quality product sub-systems/components that need to be po-

tentially re-designed in future products. During product development, the assessment

of the static metrics can help focus product testing and quality assurance processes on

the most frequently occurring failure modes and/or product sub-systems.

The assessment process for the static quality metrics is as follows:

1. Rank the failure modes in descending order of relative occurrence.

2. Use the ranking to organize the failure modes into high-occurrence and low-

occurrence groups.

3. Determine an appropriate threshold for the RPN values in the high-occurrence

group. This threshold should be set based on historical failure mode data from

similar products.

4. Apply the threshold to identify the subset of critical failure modes in high-occurrence

group.

The assessment of the nominal metrics has two primary applications related to prod-

uct delivery. First, we want to identify failure modes where the nominal occurrence is
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increasing over time. This would indicate a systematic problem that needs to be re-

solved. Second, we want to use the nominal metrics in order to forecast the daily

frequency of occurrence for each failure mode. These forecasts would enable better

allocation of product delivery resources such as technical support teams.

The assessment process for the nominal metrics is as follows:

1. Rank the failure modes by mean occurrence.

2. Use the ranking to organize the failure modes into high-occurrence and low-

occurrence groups. (Note: these groups should be consistent with the groups

created during the assessment of the static metrics.)

3. Determine an appropriate threshold for the RPN values in the high-occurrence

group. This threshold should be set based on historical failure mode data from

similar products.

4. Failure modes that have a large negative trend (growth rate) can safely be ignored

regardless of the RPN value. Failure modes with a small negative or neutral trend

and a RPN above the threshold be investigated by the product delivery teams.

Failure modes with large positive trend should be investigated by the product

delivery teams regardless of the RPN value.

The assessment of the deviation metrics enables the detection of abnormal changes

in the frequency of occurrence of product failure modes. These abnormalities are often

early indications of emerging product quality problems such as software defects. De-

tecting these emerging issues before they impact a large number of customers can be

used to improve the effectiveness and efficiency of product delivery processes.

The assessment process for the deviation metrics is as follows:

1. Rank the failure modes by absolute deviation.
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2. Use the ranking to organize the failure modes into high-occurrence and low-

occurrence groups.

3. Determine an appropriate threshold for the RPN values in the high-occurrence

group. This threshold should be set based on historical failure mode data from

similar products.

4. Apply the threshold to identify the subset of critical failure modes in high-occurrence

group.

The results of applying these guidelines to assess the quality metrics from Table 4.4

is discussed in Section 4.6.

4.6 Results: Quality Monitoring and Assessment for the ASA 5505

Network Security Product

In this section we describe the results of quality monitoring and assessment for the ASA

5505 network security product. The results are organized into two parts. First, we

summarize the absolute, nominal, and deviation quality metrics for the ASA 5505. We

then assess the quality of the ASA 5505, using the computed quality metrics, and discuss

the potential application of the assessment to improve product design, development,

and delivery. The assessment results directly follow from the implementation of the

assessment guidelines developed in the Outer layer of the Product Quality Monitoring

Process Methodology (Section 4.5.5).

4.6.1 Monitoring ASA 5505 Quality

Product quality is monitored using a set of metrics computed from the 100,000 collected

customer service requests. Table 4.4 shows the results of computing the quality met-

rics for the ten selected failure modes related to the ASA 5505 fail-over feature. For a
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particular failure mode cj , the absolute occurrence metric F
cj
abs measures the total num-

ber of times cj has occurred (Equation 4.39) in the collected data set D. The relative

occurrence metric F
cj
rel measures the occurrence of cj relative to the occurrence of all

failure modes (Equation 4.41).

For the ASA 5505 the absolute and relative occurrence metrics show that the occur-

rence of the ten monitored failure modes was unbalanced and not uniformly distributed.

The five high-frequency failure modes (“configuration sync”, “no switch-over”, “fail-over

link”, “license”, and “VPN”) each occurred more than 1,000 times and accounted for the

majority of the ASA 5505 fail-over related failures. The remaining five low-frequency

failure modes had a low absolute occurrence (between 100 and 250 times during the

four month in which the failure modes were monitored). We also found that a signifi-

cant number (56 %) of the fail-over related service requests, labeled as “miscellaneous”

in Table 4.4, that did not correlate to one of the ten critical failure modes we were

monitoring.

The mean occurrence metric µcj measures the mean daily occurrence of failure mode

cj (Equation 4.42). The growth metric, δcj , measures the mean rate of change of the

daily occurrence of cj (Equation 4.43). For the ASA 5505, the mean occurrence varied

significantly between the ten critical fail-over failure modes. The five high-frequency

failure modes had a µcj value between seven and ten failures per a day. The other

five, low-frequency, failure modes occurred approximately once per day. The rate of

change for all ten failure modes was constant over time and exhibited little change (δcj

was between 0.0103 -0.003 failures per day). The small value for δcj suggests that the

quality of the ASA 5505 fail-over sub-system is not changing over time.

For a particular failure mode cj , the absolute deviation metric, A
cj
abs, measures the

total number of days where the deviation component of cj is larger than the threshold

defined by the upper control limit, UCLcj (Equation 4.44). The relative deviation

metric, A
cj
rel, measures the percentage of the time that the deviation component of cj is
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Failure Mode Absolute
Occur-
rence
(F

cj
abs)

Relative
Occur-
rence
(F

cj
rel)

Mean
Occur-
rence
(µcj )

Growth
(δcj )

Absolute
Deviation
(A

cj
abs)

Relative
Deviation
(A

cj
rel)

Both Active 258 1.58 % 0.78 -0.0002 8 4.1 %

Configuration
Sync

1721 10.67 % 9.30 -0.0016 0 0 %

No Switch-
over

1498 9.28 % 8.25 -0.0035 3 1.5 %

Fail-over
Communica-
tion

206 1.26 % 1.1044 -9E-05 6 3.1 %

Fail-over
Link

1731 10.73 % 8.24 0.0103 4 2 %

Both Active 143 0.88 % 0.78 -0.0002 0 0 %

Software
Upgrade

158 0.96 % 0.361 0.0032 2 1 %

License 1690 10.47 % 8.40 0.003 0 0 %

Memory 92 0.6 % 0.8048 -0.0033 0 0 %

VPN 1333 8.26 % 7.8327 -0.0101 2 1 %

Miscellaneous 9181 56.9 % 51.73 -0.0031 0 0 %

Aggregate 16127 100 % 88.56 -0.029 0 0 %

Table 4.4: Quality metrics for the ASA 5505 fail-over feature
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larger than this threshold (Equation 4.47). During the four month monitoring period

the values for absolute occurrence metric for the ten ASA 5505 failure modes ranged

from zero to eight days where the deviation was significantly large. The majority of

the deviations in product quality (18 out of the 22 total counts of deviation across all

failure modes) were for failure modes, such as “fail-over communications” and “both

active”, with a mean occurrence of approximately one failure mode per a day. For these

failure modes, it is likely that the sparseness of the historical occurrence data resulted

in an artificially low UCLcj threshold. None of the failure modes being monitored had

a relative deviation larger than 4% of the total number of days monitored.

4.6.2 Assessment of ASA 5505 Quality

The assessment component of the Product Quality Monitoring and Assessment Process

Methodology (PQMAPM) is based on applying the guidelines to quality metrics. The

first set of guidelines, related to the static quality metrics, assess the overall quality of

the different product sub-systems. We start by identifying the set of failure modes with

a high absolute occurrence. The five high-occurrence failure modes are as follows: “con-

figuration sync”, “no switch-over”, “fail-over link”, “license”, and “VPN”. We then set

a threshold for the RPN value from the product’s Failure Modes and Effects Analysis

(FMEA) and absolute occurrence and identify the subset of critical failure modes. This

threshold is typically determined using historical data for absolute and relative occur-

rence of failure modes for similar products. For this particular problem we did not have

this data available and the product experts estimated a threshold of 100 for the RPN

value and a threshold value of 1,500 for the absolute occurrence. The application of

this threshold to the high-occurrence failure modes identified two critical failure modes:

“configuration sync” and “fail-over link”.

A second important application of the absolute and relative metrics is assessing

the completeness of the critical failure modes selected in the External layer of the
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PQMAPM. When the relative occurrence of the“miscellaneous” failure mode is large,

it is useful to work with the product subject matter experts to refine the FMEA and

identify new failure modes that need to be monitored. The assessment of ASA 5505

determined that the “miscellaneous” failure mode had an larger than expected abso-

lute and relative occurrence. This suggests that it would be useful to re-evaluate the

product’s FMEA and expand the number of critical failure modes until the relative

occurrence was a smaller proportion of the total number of failure modes.

The second set of guidelines, for assessing the nominal metrics, characterize the

occurrence of different product failure modes over time and can be used to improve

product delivery. In the ideal scenario the values for the mean occurrence and growth

metrics for each failure mode would be benchmarked against historical data for similar

products in order to identify potential issues. Since historical data was not available for

this particular problem we used the product experts to manually review the nominal

quality metrics and determine the set of critical failure modes based on the mean occur-

rence and growth metric values. The product experts’ assessment was that there was

no critical failure modes with respect to the nominal metrics because the failure modes

with a large mean occurrence (“configuration sync”, “no switch-over”, “fail-over link”,

“license”, and “VPN”) had a growth metric value of close to zero. The mean occurrence

and growth metrics can also be used in the Exponential Smoothing model (Equation

4.23) to forecast the daily service request volume for each failure mode. These forecasts

could be used to improve resource allocation by ensuring that the necessary number of

support engineers were available for the anticipated service request volume.

The third set of guidelines address the deviation metrics and enable the detection of

abnormal product behavior that indicate possible emerging quality issues, e.g. a serious

defect in a new software release. From the results of Table 4.4, there are three failure

modes with a large value for the absolute deviation metric: “both active”, “fail-over

communications”, and “fail-over link”. Similar to the assessment of the static metrics,
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we then apply a threshold based the RPN value and absolute occurrence. Product

experts estimated a threshold of 100 for the RPN value and a threshold value of 5 for the

absolute deviation. Using the absolute deviation threshold, “fail-over communications”

is a critical failure mode. Further investigation by product experts determined that

there were no specific quality issues related to the “fail-over communication” failure

mode.

Using the FAST diagram for the ASA 5505 we then mapped the critical failure

modes to the corresponding product sub-systems. The “configuration sync’ and “fail-

over communication” failure modes both mapped to the stateless fail-over sub-system;

while the “fail-over link” failure mode mapped to the fail-over link sub-system. The

presence of two critical failure modes in the “stateless fail-over” sub-system suggests

that it would be useful for the product design team to potentially redesign this sub-

system in future network security products. Since the assessment only identified a single

failure mode for the fail-over link sub-system, it is may not be necessary to redesign this

sub-system.

For this problem, the quality monitoring and assessment results show that there

are no serious quality issues with the ASA 5505 fail-over feature and, therefore, no

further actions need to be taken. In general product quality information can be used

by the product manufacturer to improve product design, development, and delivery.

In product design, the assessment of the static metrics enabled the identification of

low-quality product sub-systems/components that need to be potentially re-designed

in future products. During product development, the assessment of the static metrics

can help focus testing processes on the most frequently occurring failure modes and/or

product sub-systems. During product delivery, the assessment enables the identification

of dominant failure modes that are growing in frequency as well as the detection of any

emerging quality issues.
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4.7 Conclusions

For the product quality monitoring and assessment problem, the five representational

layers of the Integrated Meta-Representational Model (IMRM) enabled the clear sepa-

ration of the following issues: domain knowledge representation (External layer), inte-

gration of the domain knowledge with data mining (Outside-In layer) and time-series

analysis (Internal layer), and the KE software environment. One of the key results of

explicitly separating these issues was the identification of Engineering Design methods, a

domain not typically considered in knowledge engineering problems, in order to formally

model the product’s failure modes. Once the data was structured by failure mode, it

was relatively straight-forward to calculate quality metrics that were immediately useful

to the product engineering teams.

Traditionally data mining is a data-driven process where algorithms are applied to

data and the resulting patterns are interpreted for novelty and usefulness. One of the

frequently cited limitations of this approach is that the extracted patterns are generally

based on correlation between variables and do not incorporate causal relationships Gly-

mour et al. [1997]. This limitation is particularly an issue in engineering applications

where cause and effect, e.g. understanding the factors that caused a particular failure

mode to occur, plays an important role in making knowledge actionable.

The incorporation of domain knowledge into the data mining process is one potential

way to address the issue of causality and ensure that knowledge engineering produces

results that are meaningful to the problem under consideration. One of the conclusions

from our work is that when attempting to model domain knowledge in technical do-

mains, e.g. computer networking, it is beneficial to first model the engineering problem

under consideration. Most engineering systems have explicit, or derivable, domain mod-

els which have causality built into their structure. Therefore, the use of these domain

models to drive the knowledge engineering process enables causality to be naturally
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incorporated. This use of causality is in contrast to statistical based approaches Silver-

stein et al. [2000] which are computationally expensive and limited in the causal models

they are capable of discovering.
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5 A Statistical Design of Experiments Approach to Ma-

chine Learning Model Selection: Theory and Applica-

tion to Predicting Customer Service Escalation

In this chapter we address the application of the representation-based framework, devel-

oped in Chapter 3, to the knowledge engineering problem of predicting which customer

service requests will need to be escalated in priority. This problem involves of the more

general knowledge engineering research issue of selecting of the best machine learn-

ing model for the application. Generally model selection problem has been addressed

by optimizing with respect to the internal aspects of the model, namely the learning

algorithm and associated hyper-parameters. However, in real-world engineering appli-

cations, there are typically a number of other factors that are external to the learning

algorithm which have a significant impact of the performance of the model. For exam-

ple, real-world machine learning problems typically begins with a lengthy pre-processing

step in which we select the relevant features, normalize, and sub-sample the data before

the learning algorithm is applied.

In this chapter we develop a simple and effective approach based on statistical Design

of Experiments (DOE) for optimizing these external parameters in combination with

the learning algorithm. In the DOE approach we treat each external model parameter,

including the learning algorithm, as a experimental factor. We then design a set of

experiments using orthogonal arrays to efficiently explore the experimental space and

determine the settings that produce the optimal model with respect to a desired perfor-

mance metric. We demonstrate the utility of the DOE approach using the problem of

predicting if a particular customer support case will need to be escalated in priority in

order to be resolved in a timely manner. Experimental results show improvement in the

optimized classification model‘s performance with respect to the objective of minimizing

total cost as well as standard metrics including accuracy, f-measure, and g-mean.
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The chapter is organized as follows. Section 5.2 formalizes the problem of model

selection and illustrates some of the key issues using an example problem from the

computer networking services domain. Section 5.3 discusses existing work related to

model selection and motivates the need for a systematic approach to building and test-

ing different machine learning models. Section 5.4 describes our approach to model

selection based on using planned experiments. Section 5.5 demonstrates the application

of the statistical Design of Experiments (DOE) method to a machine learning problem

in the computer networking domain. Section 5.6 presents the results from the knowl-

edge engineering problem application in the computer networking domain. Lastly, in

Section 5.7, we discuss the benefits of the using planned experiments, and how the

representation-based model enables this approach to be applied to larger set of model

selection problems.

5.1 Introduction

The purpose of this section is to describe the machine learning model selection problem,

outline some of the research issues involved, and describe our key contributions to these

research issues.

5.1.1 Background

An important problem in machine learning is the selection of the settings that pro-

duce the best predictive model for a particular application, e.g. predicting customer

service request escalation. A key parameter when creating predictive models is the

learning algorithm used, e.g. support vector machines, to create the model from the

training/test data-set. Furthermore, each learning algorithm has a number of so-called

hyper-parameters associated with it that control how the algorithm learns, e.g. the

kernel function used in the support vector machines. Existing approaches to model se-
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lection have primarily focused on either the selection of the learning algorithm ([Michie

et al., 1994], [Brazdil et al., 2003]), the optimization of the hyper-parameters associated

with the learning algorithm ([Strijov and Weber, 2010], [Bergstra et al., 2011], [Snoek

et al., 2012]), or the combined algorithm selection and hyper-parameter optimization

problem [Thornton et al., 2013].

The application of machine learning techniques to real-world engineering problems in-

volves other additional parameters, beyond the learning algorithm and hyper-parameters,

which are in general application dependent, and critical to the performance of the model.

For example, one issue that frequently comes up in real world problems is an imbalance

in the class distribution of the training/test data-set which results in a severe bias in the

resulting machine learning model. We can consider the various approaches to addressing

this issue—resampling, cost sensitive learning, etc.—as an additional parameter in the

machine learning process.

5.1.2 Research Issues

This work addresses the problem of optimizing the combination of the machine learning

algorithm and the external parameters for the machine learning process within the

context of creating predictive models for engineering applications. This task involves

the following research issues:

1. The creation of a rational framework organizing the variety of decisions involved

in machine learning model selection in engineering applications.

2. The development of a process methodology for fast and efficient machine learning

model selection in engineering applications.

3. The application and evaluation of the process methodology for machine learning

model selection using a real-world engineering application.
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5.1.3 Contributions

Our contributions to the research issues, described in the previous section, are as follows:

1. We have identified and organized the different types of parameters (decisions)

involved in model selection. In the process we have formalized the notion of a set of

external parameters for the machine learning model and created a framework that

can be used to explicitly structure the engineering application-specific decisions

involved in the machine learning process. (See Section 5.2)

2. We have adapted the Taguchi method [Taguchi and Konishi, 1987], from the

domain of Statistical Design of Experiments, to create a process methodology for

optimizing the external parameters for a particular machine learning model. They

key idea in the Taguchi method is the design of an orthogonal array of experiments

that spans, in general, a large experimental space of factors and factor levels with

a minimal number of experiments. The method consists of three stages. The

first stage defines the minimal number of experiments (orthogonal array) to be

performed in the experimental space of the factors and the levels associated with

each experimental factor. The second stage poses an optimization problem to

maximize the s/n ratio based on a user-defined performance metric. The third

stage uses Statistical Analysis of the Means (ANOM) to determine the optimal

settings for each experimental factor level. The optimal settings are then used to

build the machine learning model for the problem of interest. (See Section 5.4)

3. We have demonstrated the utility of the developed process methodology, described

above, using an important problem in the computer network domain: predict

whether or not a particular customer support case needs to be escalated in prior-

ity in order to be resolved in a timely manner. The experimental design for this

problem consisted of nine experiments that tested four different machine learning

process parameters—feature selection strategy, sampling strategy, learning algo-
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rithm, and classifier structure—each with three different levels or settings for the

parameters. The Taguchi method resulted in a significant improvement of the

model performance with respect to the objective function of minimizing total cost

as well as standard machine learning metrics including accuracy, f-measure, and

g-mean. (See Section 5.5, 5.6)

5.2 Problem Formulation

All machine learning algorithms have parameters known as hyper-parameters associated

with them, for example, the kernel function in the support vector machine algorithm.

These parameters can be thought of as “internal” to the model. When creating a

machine learning model for engineering problems in complex technical domains there

are a number of other additional considerations, “external”, to the learning algorithm

and associated hyper-parameters that have a significant effect on model performance.

For example, real-world data-sets typically require pre-processing (feature selection,

normalization, sub-sampling, etc.) before the learning algorithm can be applied. The

purpose of this section is to formalize the model selection problem within the context of

these external model parameters. To this end, this section is organized into two parts.

First, we use the important real-world knowledge engineering problem of predicting

service level escalation to develop and illustrate issues that lead to the external model

parameters. We then formalize the notion of a machine learning model with external

parameters and pose the model selection problem in this context.

Consider a customer support center that provides technical support for computer

networking products. Once a customer case is received by the support center, it is typ-

ically worked on by the same team of engineers until the problem is resolved. However,

for a small percent of cases it is necessary to escalate the service request in priority and,

then re-route it to a new support team in order to resolve the customer‘s problem in a

timely manner. The process of escalating a case after it has already been routed to a

95



www.manaraa.com

support team is typically very expensive and resource intensive. Proactively predicting

which service requests are most likely to be escalated, and, then escalating immediately

would significantly reduce the cost associated with the escalation process.

For this problem, the desired machine learning model, denoted Φ, takes a customer

service request as input and outputs a binary decision for whether the service request

should be escalated in priority. Let X denote the particular customer service request

of interest and y ∈ {−1,+1} denote a binary prediction, indicating whether the service

request should be escalated (y = +1), or not (y = −1). The machine learning model,

Φ, is defined as the mapping function shown in Equation 5.1.

Φ : X → y (5.1)

This mapping function, Φ, is generated by applying a machine learning algorithm,

e.g. support vector machines, to a data-set of historical service requests where we know

the corresponding escalation label for each service request. The process of applying the

machine learning algorithm, which we will call the machine learning process, involves

a large number of problem-specific decisions that need to be made by the knowledge

engineer. For example, some of the decisions involved in the service request escalation

problem are as follows:

1. Feature Selection: Each service request contains over a hundred different fea-

tures or attributes; however, many of these features, e.g. customer address, are

not relevant for predicting whether a service request needs to be escalated. We

therefore need to determine the best method for selecting the subset of features

to use when constructing the model.

2. Asymmetrical Misclassification Cost: The misclassification costs associated

with each service request are not symmetrical. A service request that is not
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escalated when it should have been escalated will have a significantly higher cost

to the organization compared to a service request that is incorrectly escalated when

it should have not been. We therefore need to select the method that optimizes

the objective of minimizing the total escalation cost.

3. Class Imbalance in the Data-set: The historical data-set of service requests

is unbalanced, i.e. the majority of the historical service requests did not re-

quire escalation. Most learning algorithms do not perform well on data with

a significant class imbalance. We therefore need to select the best method—e.g.

oversampling—for addressing the class imbalance when constructing the machine

learning model.

4. Learning Algorithm Selection: There are a number of well-known supervised

machine learning algorithms (e.g. decision trees, support vector machines, naive

bayes) which can be used to generate a classification model, however, it is not

clear which will algorithm perform best for the service request data. We therefore

need to select the best algorithm to use when constructing the machine learning

model.

5. Hyper-Parameter Optimization: Each learning algorithm has a number of

so-called hyper-parameters that control how the algorithm learns (e.g. the kernel

function for the support vector machines algorithm, the number of hidden layers

used in the neural network algorithm, and the number of neighbors in k-nearest

neighbors algorithm). We therefore need to select the best value of each hyper-

parameter associated with the selected learning algorithm.

The machine learning process can produce a wide range of different models depend-

ing on the decisions made by the knowledge engineer. For example, if the knowledge

engineer decides to use naive bayes instead of support vector machines for the learning

algorithm, the machine learning process will produce a distinctly different model Φ.
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The overall objective for the knowledge engineer is to, given the wide range of models

that can be generated, generate the specific model that performs best for the problem

under consideration. We refer to this task as the model selection problem.

We distinguish between three distinct approaches to the model selection problem.

These approaches are depicted in Figure 5.1. The first approach, which we refer to as

“algorithm-down”, is to focus on the learning algorithm and associated hyper-parameter

(Issues 4, 5 above). The second approach, which we refer to as “algorithm-up”, focuses

on the algorithm and the data pre-processing related decisions (Issues 1-4 above). Fi-

nally, the third approach, “algorithm-up-down”, combines the “algorithm-down” and

“algorithm-up” approaches to address the end-to-end machine learning process (Issues

1-5).

In this work we focus on the “algorithm-up” approach to model selection. Based on

our experiences in solving complex engineering problems, we believe that the external

parameters are, in general, critical to overall effectiveness of the machine learning model.

However, there is a distinct lack of existing work that addresses how the knowledge en-

gineer can systematically address the problem of optimizing these external parameters.

Furthermore, there are a number of well-known techniques, such as Bayesian optimiza-

tion [Bergstra et al., 2011], that have already addressed the “algorithm-down” approach

and can be readily used by knowledge engineers.

In the “algorithm-up” approach, we define a model parameter, θi, to be any aspect

of the machine learning process that can be controlled by the knowledge engineer. The

parameter space, denoted Θ, for a particular problem is the set of all model parameters

θ1, θ2, ...., θn. For example, in the escalation problem the model parameter space, Θ,

could be defined as:
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Figure 5.1: Layering the model selection problem into “algorithm-up” and “algorithm-
down” approaches

θ1 = Feature Selection Method

θ2 = Misclassification Cost Method

θ3 = Class Imbalance Method

θ4 = Learning Algorithm

Each parameter θi is associated with a set of m possible values, denoted αi,j (j =

1, 2, ...,m), that the parameter can take. For example, the range of values for the

learning algorithm parameter, θ4 in the example above, could be
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α4,1 = Naive Bayes

α4,2 = Support Vector Machines

α4,3 = Random Forests

In order to formalize the model selection problem with external parameters, we have

drawn upon the algorithm selection framework from earlier work ([Rice, 1976], [Smith-

Miles, 2008]). Our adaptation of this framework consists of five major blocks shown in

Figure 5.2. We describe each of the five blocks below.

The three major inputs to the machine learning process are represented by the fol-

lowing blocks in Figure 5.2: the problem space P , the parameter space Θ, and the

performance metric space Γ. The problem space, denoted P , is the set of all data that

has been collected for the problem of interest. Inside of this problem space, we will

select a subset of data to serve as the training/test data-set, denoted D, for creating the

machine learning model. Each instance in this training/test data-set, denoted d ∈ D,

consists of a service request X and a prediction label y. The parameter space Θ is the

set of all machine learning process parameters, θ1, θ2, ..., θn, that can be controlled by

the knowledge engineer. The performance metric space, denoted Γ, is the set of evalu-

ation metrics—e.g. accuracy, f-measure, and g-mean—that we will use to evaluate the

performance of the machine learning model.

The machine learning process itself is represented by the following two blocks in

Figure 5.2: model creation and model evaluation. The model creation block takes the

data-set D and selected model parameter values A as input and produce the machine

learning model Φ(A;D). The model evaluation block takes a machine learning model

Φ(A;D) and performance metric γ ∈ Γ as input and produces the model evaluation

γ(Φ(A;D)) as output.
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Figure 5.2: Formulation of the machine learning model selection problem

Using Figure 5.2 the model selection problem, to be performed by the knowledge

engineer, can now be formally described as follows:

1. Define the external parameters θ1, θ2, ..., θn. For each parameter θi (i = 1, 2, 3, ..., n),

define the corresponding values αi,j (j = 1, 2, 3, ...,m). This is the model param-

eter space in Figure 5.2.

2. Select the set of training/test instances D from the problem space P that will

be used create the machine learning model. This is the output from the problem

space P in Figure 5.2.

3. For each parameter θi (i = 1, 2, ..., n), select a value αi (i = 1, 2, 3, ..., n) where

αi ∈ {αi,1, αi,2, ..., αi,m}. The resulting parameter vector, denoted as A, is

A→ {α1, α2, ..., αn}. (5.2)
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This is the output from the parameter space Θ in Figure 5.2.

4. In order to create the model, apply the machine learning process to the data-set

of training/test examples D. The resulting model, Φ, is denoted as

Φ(A;D) . (5.3)

This is the output from the model creation in Figure 5.2. It is important to note

that in Equation 5.3 the parameter vector A is the variable of interest. We have

included the data-set D in the model definition to emphasize the fact the training

data-set is integral to resulting model.

5. Evaluate the machine learning model with respect to the performance metric γ ∈ Γ

for the problem under consideration.

γ(Φ(A;D)) (5.4)

This is the output from the model evaluation in Figure 5.2.

6. Based on the model evaluation, determine the combination of learning algorithm

and values for the external parameters that optimize the performance metric for

the problem under consideration. Let A∗ denote the parameter value vector that

optimizes Equation 5.4. For the given set of training/test instances D ∈ P , find

the parameter value vector A∗ which optimizes γ(Φ(A∗;D)).

5.3 Literature Survey

In section 5.2 we identified three different approaches to the machine learning model

selection problem: “algorithm-up”, “algorithm-down”, and “algorithm-up-down”. Ex-

isting work in the machine learning community has primarily addressed the “algorithm-

down” approach to model selection which focuses on optimizing the learning algorithm
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and associated hyper-parameters. Inside the “algorithm-down” body of work, there are

three major areas: selection of the best learning algorithm, optimization of the hyper-

parameters associated with a selected algorithm, and combined algorithm selection and

hyper-parameter optimization. The purpose of this section is to summarize the work in

each of the areas related to “algorithm-down” optimization. We then discuss some of

the challenges and limitations related to the “algorithm-down” approach for real-world

knowledge engineering problems. This leads to the motivation for the “algorithm-up”

approach which is then developed in Section 5.4.

The first major area of work addresses algorithm selection problem: which machine

learning algorithm will produce the best model for my data-set. There are two general

approaches that have been developed in the machine learning community for algorithm

selection. The first approach, meta-learning, involves creating machine learning model

that can predict of the performance of different learning algorithms given a particular

data-set [Smith-Miles, 2008]. In order to create a machine learning model for predicting

algorithm performance we first need a data-set of how different algorithms perform.

To this end, the Statlog project [Michie et al., 1994] generated meta-data statistics

such as number of features, class entropy, attributes and classes correlations for several

data sets with the aim of comparing the performance of a fixed set of algorithms.

The meta-data from the Stat-log project was then used to generate rules for when to

apply particular algorithms ([Gama and Brazdil, 1995], [Lindner and Studer, 1999]).

The METAL project [Brazdil et al., 2003] expanded on the earlier work in Statlog to

address classification and regression problems. In particular, METAL introduced the

use of simple and fast learners called landmarkers for predicting the performance of

algorithms [Pfahringer et al., 2000]. To generate rules, both the landmarkers and the

learning algorithms are first trained on a given set of data-sets. The performance of a

landmarker on new data-sets is then used to rank algorithms based on their likelihood

of performing well based on their similarity to the landmarker.
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The second general approach to algorithm selection is to combine multiple machine

learning models into an ensemble or collection of models. Within ensemble learning

there are two well-known methods: bagging and boosting. Bagging [Breiman, 1996] uses

multiple models, learned on random samples of the same data-set, in order to reduce

the variance of the predictions. Boosting [Schapire, 1990] changes the data sampling

distribution for each iteration so that the number of misclassified instances from the

previous iteration are increased. This effectively enables each model to “correct” for

the mistakes of the previous model and, in general, increases the predictive power of the

ensemble as a whole. For both bagging and boosting, the ensemble performs a majority

voting on new instances in order to determine the class prediction.

After the algorithm is selected, there are a number of algorithm-specific parameters

that adjust how the algorithm operates. For example, when applying the artificial neural

network learning algorithm we need to select the number of nodes in the hidden layer

of the neural network. The second major area of work addresses the optimization of

these so-called hyper-parameters for the problem under consideration. A large body

of work ([Strijov and Weber, 2010] [Bergstra et al., 2011], [Bergstra et al., 2013]) has

addressed tuning the hyper-parameter using Bayesian optimization techniques. The idea

in Bayesian optimization is we assume a prior distribution for the objective function.

We then perform experiments and sequentially refine this function as data are observed

via Bayesian posterior updating.

The third major area of existing work addresses the combined algorithm selection

and hyper-parameter optimization problem. Auto Weka [Thornton et al., 2013] treats

the choice of the learning algorithm as an additional hyper-parameter in the model

and then shows how the resulting hierarchical hyper-parameter optimization problem

can be solved using Bayesian optimization methods such as Tree-structured Parzen

Estimator [Bergstra et al., 2011] and Sequential Model-Based Algorithm Configuration

[Bergstra et al., 2013]. Meta-collaborative filtering [Smith et al., 2014] attempts to find
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combinations of learning algorithms and associated hyper-parameters that will perform

well for a given data-set based on the performance for past data-sets. This is similar to

earlier work in landmarking [Pfahringer et al., 2000] however incorporates the hyper-

parameters in addition to the learning algorithm.

In real-world applications the external machine learning process parameters have a

significant impact on how well the model solves the problem under consideration and

it is important to consider alternatives for all aspects of the process in addition to the

learning algorithm and associated hyper-parameters. At the same time there is a lack

of easy to implement methods for exploring alternatives which often leads to important

parameters, such as how the training/test data-set is created, to be selected ad-hoc. In

order to address this problem we need an easily applicable approach for optimizing the

external parameters in the machine learning process approach that can be implemented

in a wide range of technology/software environments.

5.4 Theory: Representation-Based Model for Machine Learning Model

Selection

In this section we show the application of the Integrated Meta-Representational Model

(IMRM) to the model selection problem formulated in Section 5.2. This leads to the

reformulation of the Internal layer for the model selection problem as an experimental

problem. We then show how the incorporation of a statistical design of experiments

(DOE) method provides an efficient approach to exploring the experimental space of

possible models. Lastly, we describe the overall process for translating a given machine

learning problem into a design of experiments problem so that the DOE method can be

applied.
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5.4.1 Layering the Machine Learning Model Selection Problem

In this section we apply the Integrated Meta-Representational Model (IMRM), devel-

oped in Chapter 3, to structure the machine learning model selection problem into five

layers so that the appropriate engineering domains and methods and tools can be ap-

plied. To this end, the section is organized into three parts corresponding to the three

high-level steps involved in applying the IMRM. First, we determine subject-matter

for each of the five representational layers. Second, based on the subject-matter to

be represented at each layer, we identify the relevant engineering domains and select

the necessary methods and tools from these domains. Third, we integrate the selected

methods and tools into an comprehensive process methodology.

The External layer subject-matter is the inputs to the machine learning process.

Following from Figure 5.2 there are three main inputs to the machine learning process:

the data-set, D, that provides the problem instances D ∈ P , the machine learning

parameters θ1, θ2, ..., θn and associated values αi,1, αi,2, ..., αi,m, and the performance

metric γ ∈ Γ. The Outer layer of the model selection problem, which satisfies the prob-

lem statement, is the machine learning model Φ(A∗;D) that optimizes the performance

metric γ.

The Internal layer subject-matter is the optimal machine learning model Φ(A∗;D).

The range of possible models for a particular machine learning process can be repre-

sented as an n by m matrix shown in Table 5.1 where matrix rows θi (i = 1, 2, ..., n)

are the set parameters for creating a machine learning model and the matrix columns

αi,j (j = 1, 2, ...,m) are the possible value for factor θi. In order to create a model the

knowledge engineer selects one column value αi ∈ {αi,1, αi,2, ... αi,m} for each of the

matrix rows θi (i = 1, 2, ..., n).

Determining the optimal combination of values, denoted by the parameter vector

A∗, requires building and testing different models. Each one of these models can be
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aaaaaaaaaaa
Parameter

Value

Value 1 Value 2 · · · Value m

θ1 α1,1 α1,2 · · · α1,m

θ2 α2,1 α2,2 · · · α2,m
...

...
...

. . .
...

θn αn,1 αn,2 · · · αn,m

Table 5.1: Experimental space for the machine learning model selection problem

thought of as an experiment to be performed. For most real engineering applications,

the number of experiments necessary to exhaustively explore Table 5.1 and determine

the optimal parameter vector A∗ = {α∗1, α∗2, ..., α∗n}, is prohibitively large. For example,

exhaustively building and testing 5 parameters with 5 possible values each would require

3,125 experiments (55) to be performed by the knowledge engineer. We now reformulate

the model selection problem as the following design of experiments (DOE) problem:

what is the minimal set of experiments that need to be performed in order to determine

optimal parameter vector A∗?

Table 5.2 shows the layers, representational subject matters, domains, and methods

for the service level escalation problem. At the External layer we need to model the

domain knowledge of the model selection problem under consideration. In the context

of engineering applications, predictive models are often developed in the context of an

engineering process. To this end we draw upon three models from the CommonKADS

methodology [Schreiber, 1994]—the organization model, the agent, and the task model—

to capture and represent the technical, organizational, and financial considerations that

are relevant to the predictive model.

A considerable body of literature exists in the development of methods for performing

experiments ([Fisher, 1935], [Taguchi and Konishi, 1987], [Fowlkes and Creveling, 1995],

[Srinagesh, 2006]). Inside of the planned Design of Experiments (DOE) methods, we

draw upon the Taguchi method [Taguchi and Konishi, 1987] to address the problem of
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planning the experiments to determine the optimal parameter vector A∗ for the machine

learning model. The Taguchi method was developed to optimize a quality characteristic

of a process or product, e.g. the number of defects for a semiconductor manufacturing

process, and thus is particularly well suited to the task of optimizing a performance

metric for a machine learning model. The application of the Taguchi method maps to

the Outside-In, Internal, Inside-Out, and Outer layers.

For any non-trivial set of experiments we need to automate the process of building

and testing the machine learning models at the Inside-Out layer. For small to medium

data-sets with less than one million data instances there are two primary options for au-

tomation: open-source tools (Weka [Witten and Frank, 2005] or R [R Development Core

Team, 2008]) or commercial data-mining tools (SAS or Matlab). For larger data-sets

with millions of instances, it is necessary to use big-data software tools (e.g. Hadoop)

to create the machine learning models in a timely manner.

In this work we have selected the Weka machine learning work-bench [Witten and

Frank, 2005] as the software tool for implementing the planned experiments at the

Inside-Out layer. Weka was selected because it supports a wide range of machine

learning algorithms and has an interactive interface that makes it easy to quickly build-

and-test different models. Lastly, at the Outer layer we analyze the results from the

experiments and use the optimal parameters to generate a prediction model. Analysis

of the Means (ANOM) [Phadke, 1989] is used to create an experiment-based model of

the factor effects. Weka is used to build the model for the verification experiment and

final prediction model.

Figure 5.3 shows the representation-based model resulting from the integration of the

methods and tools described above. The model is implemented by sequentially stepping

through each layer as follows:

1. External layer: Capture the work-process that the machine learning model will
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Layer Subject Matter
Domains and Representational Methods/Tools

Knowledge Engi-
neering

Machine Learning Robust Design

External Organizational
context and cur-
rent work process
for service request
escalation

CommonKADS
Organization,
Agent, and Task
Models

Outside-In Performance met-
ric

Taguchi method:
Signal-to-Noise
Ratio

Internal Experimental De-
sign

Taguchi method:
Orthogonal Ar-
ray for Planned
Experiments

Inside-Out Perform Experi-
ments

Weka Machine
Learning Work-
bench

Outer Model Selection Taguchi method:
Analysis of the
Means (ANOM)

Table 5.2: Layer-subject matter-representational tools/methods matrix for predicting
service request escalation

automate by creating a CommonKADS Agent/Task Model.

2. Outside-In layer: Determine the performance metric that the machine learning

model needs to optimize. Transform the performance metric into a signal-to-noise

(s/n) ratio function to be maximized.

3. Internal layer: Determine the control, signal, and noise factors for the machine

learning model. Select the appropriate orthogonal array and assign the factors

and the factor settings or levels, respectively, to the columns and rows of the

orthogonal array matrix.

4. Inside-Out layer: Perform the experiments in the Weka machine learning work-

bench. Record the prediction results for the test data-set and compute the s/n

ratio for each experiment.

5. Outer layer: Perform Analysis of the Means (ANOM) to compute the s/n ratios

for each combination of factor and level setting. Select the combination of factor
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Figure 5.3: Representation-based model for predicting service request escalation

settings that maximize the overall s/n ratio. Perform a verification experiment to

check the results.

The implementation of the representation-based model is described in Section 5.5.

5.4.2 Design of Experiments for Machine Learning Model Selection

In this section we show the mapping between the Taguchi Design of Experiments (DOE)

methods and the external model selection problem. To this end, we first transform the

model selection problem from the machine learning domain to the design of experiments

domain. We then show how the optimal level settings are determined for the experimen-

tal factor levels using Analysis of Means (ANOM). Lastly, we show the transformation

of the optimal level settings back to the machine learning problem in order to determine

the optimal values for the external parameter vector.

Before we describe the Taguchi method, we first define the basic terminology and

notation used in experimental design. The variables or inputs of interest in any experi-

ment are called factors. In a given experiment the value or setting of a given factor is

called the level of that factor. Let fi (i = 1, 2, ..., n) denote the ith factor in the factor

space of the experiment, and let Li,j (j = 1, 2, ...,m) denote the jth level of the factor

i. For the purposes of this work we make the simplifying assumption that each factor

contains m levels.
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An experiment consists of a user-selected level setting for each one of the n factors.

Let Lk
i ∈ {Li,1, Li,2, ..., Li,m} denote the selected level setting for the ith factor in the

kth experiment. The kth experiment, denoted Ek, is therefore defined as follows

Ek ≡ {Lk
1, L

k
2, ..., L

k
n} (5.5)

In the Taguchi method we are trying to optimize a quality characteristic. The factors

that influence a quality characteristic of a system or process of interest can be organized

into three classes:

1. Signal Factors: These parameters are set by the user or operator of the system

to obtain the intended value for the response of the process.

2. Noise Factors: The noise factors are the input parameters to the system, which,

in general are uncontrollable.

3. Control Factors: The control factors are the parameters of the system controlled

by the designer/developer in order to optimize the quality.

The control factors fi (i = 1, 2, ..., n) are the parameters that can be adjusted to

optimize the quality characteristic. The signal factors are the output of the system or

process that we are measuring using the quality characteristic.

In the Taguchi method, we define the s/n ratio, denoted as η, as a function of the

quality characteristic that we then desire to maximize. The most basic but inefficient

way to maximize η is to try exhaustively, every possible combination of level settings for

each factor an then determine the combination of level settings for which η is maximized.

This approach is called a full factorial design and requires mn experiments where n is

the number of factors and m is the number of levels for each factor (for the purposes of

explanation we assume each factor has the same number of levels).
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Experiment Factor 1 (f1) Factor 2 (f2) Factor 3 f3 Factor 4 f4)

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

Table 5.3: Orthogonal array for a four factor - three Level experimental design

In contrast to the full factorial approach described above, the Taguchi method uses

special matrices, called orthogonal arrays [Taguchi and Konishi, 1987], to plan the ex-

periments to be performed, and then, Analysis of the Means [Phadke, 1989] to efficiently

determine the optimal level settings for each factor. Table 5.3 shows an example of an

orthogonal array for the case of four factors fi (i = 1, 2, 3, 4), where each factor has

three levels (i = 1, 2, 3). The full factorial approach for this case would require 34 = 81

experiments. In contrast, as seen in Table 5.3, the Taguchi method requires only 9

experiments.

Using Table 5.3 we can illustrate the main points of how orthogonal arrays are used

in the Taguchi method:

1. Each row of the orthogonal array corresponds to an experiment. For example, the

fourth row, i.e. experiment 4, corresponds to an experiment with the level settings

2, 1, 2, and 3, for factors 1, 2, 3, and 4, respectively. In the notation of Equation

5.5; E4 = (L1,2, L2,1, L3,2, L4,3).

2. The total number of experiments that need to be performed is equal to the number

of rows in the orthogonal array. For the case of Table 5.3 where we have 4 factors

with 3 levels for each factor, 9 experiments are required in order to find the optimal

level settings.
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3. For any two columns in the orthogonal array every ordered pair of level settings

occurs in exactly one row. For example, in Table 5.3 there are no duplicate pairs of

level settings for factors f1 and f2. As a result,the columns of the orthogonal array

columns are independent to each other and each level settings occurs the same

number of times across the columns. These two properties enable the factors to

be tested pair-wise as opposed to one factor at a time which results in significant

efficiency gains with respect to the one-factor-at-a-time and factorial designs.

4. The advantage of the Taguchi method is that it enables the experimentalist to

span the experimental space with a minimal set of experiments, 9, in the present

case compared to the 81 experiments require in the full factorial approach.

There are two general ways to apply the Taguchi method [Phadke, 1989]. In the first

approach, all the control factor are assumed to be independent, and as a consequence,

their effect on the signal factor is additive. In this case, orthogonal arrays [Taguchi and

Konishi, 1987], such as the one shown in Table 5.3, can be directly used to plan the

experiments and analyze the results. For the case of n factors and m levels per a factor,

it can be shown that [Phadke, 1989] the number of experiments, g is given by

g = 1 + n(m− 1). (5.6)

In the second approach, the factors are dependent on each other. In this case, the

dependencies between the factors must first be modeled using linear graphs [Taguchi

and Konishi, 1987]. We then assign each one of these factor interactions, modeled in the

linear graph, to a separate column of the orthogonal array. Performing the experiments

in the orthogonal array then allows us study interactions between the factors while also

measuring the effects of the individual factors. A detailed discussion of linear graphs

and how to study interaction between the factors can be found in [Phadke, 1989].
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In this work, for simplicity and for the purposes of illustrating the use of the Taguchi

method to the machine learning model selection problem, we assume no interaction

between the different parameters in the machine learning process. The basic Taguchi

method, based on the assumption of independence, essentially comprises of three distinct

stages [Phadke, 1989] summarized as follows:

1. Plan the experimental design using orthogonal arrays.

(a) Determine, n the number of control factors we want to test, e.g., in Table 5.3

n = 4.

(b) Determine m, the number of levels for each factor, e.g., in Table 5.3 m = 3.

(c) Determine the orthogonal array for the combination of n control factors and

m levels per factor. A catalog of orthogonal arrays for the common values of

n and m can be found in [Taguchi and Konishi, 1987], [Phadke, 1989]. The

orthogonal array for the case of n = 4, m = 3, shown in Table 5.3, specifies

the number of experiments required (9 in this case) as well as the levels for

each factor in a given experiment.

2. Perform the experiments as specified by the orthogonal array.

(a) Determine the s/n ratio, η, to be measured in the experiments. The three

different general forms of the s/n ratio function depending on the objective

function for the quality characteristic:smaller-the-better, larger-the-better,

and nominal-the-best [Phadke, 1989]. In the service request escalation ex-

ample we use the s/n ratio function given by Equation 5.9.

(b) For each experiment Ek, corresponding to one row in the orthogonal array,

measure the corresponding value of ηk, the s/n ratio for the experiment k.

3. Perform an Analysis of the Means (ANOM) for the experimental data.
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(a) Compute η̄, the overall mean of the s/n ratio η across all experiments, as

given by Equation 5.10.

(b) Compute the mean s/n ratio, denoted η̄(Li,j), for each factor level Li,j (i =

1, 2, ..., n)(j =, 1, 2...,m) as given by Equation 5.11.

(c) Determine the combination of level settings for each control factor that max-

imize η as given by Equation 5.12, and then compute the predicted value of

the optimal η as given by Equation 5.13.

(d) Perform an actual verification experiment to check the results obtained in

Step (c).

We now develop the formal notation and analytical details for the process described

above. In Step 1 of the Taguchi process we define the control factors and the levels

associated with each control factor. Each machine learning model parameter, θi (i =

1, 2, ..., n), will be treated as a factor, denoted as fi, in an experiment. We denote this

equivalence as follows:

θi ≡ fi (i = 1, 2, ..., n) (5.7)

Each possible value that the model parameter θi can take, denoted αi,j (j = 1, 2, ...,m)

in Equation 5.8, is then equivalent to a level, denoted as Li,j , associated with factor fi

(i = 1, 2, ..., n):

αi,j ≡ Li,j (i = 1, 2, ..., n), (j = 1, 2, ...,m) (5.8)

In Step 2 of the Taguchi method we define the s/n ratio to be measured. For

the model selection problem we are trying to optimize a performance metric γ ∈ Γ

(Section 5.2). In our treatment, this performance metric γ is now equivalent to the
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quality characteristic in the Taguchi method. Each experiment generally involves several

measurements of the quality characteristic. Let s denote the number of measurements

in each experiment and γki (i =, 1, 2, ..., s) denote the ith measurement of the quality

characteristic for the kth experiment

In the case of the service request escalation problem, quality characteristic γki (i =

, 1, 2, ..., s), representing the escalation, needs to be minimized. Minimizing γki is equiv-

alent to maximizing the following s/n ratio [Phadke, 1989]:

ηk = −10log10
1

s

s∑
i=1

(γki )2db, (5.9)

where ηk is the mean square of the performance metric γk expressed in decibels.

In Step 3 of the Taguchi process, Analysis of the Means (ANOM) [Fowlkes and

Creveling, 1995] is used to determine the effect of each factor on the s/n ratio ηk and

determine the optimal level settings. The ANOM technique begins with computing

the overall experimental mean of the s/n ratio across all experiments. Let η̄ denote the

overall experimental mean. For the case of the basic Taguchi method with n independent

control factors, each with m levels, η̄ is given by

η̄ =
1

1 + n(m− 1)

1+n(m−1)∑
i=1

ηkdb, (5.10)

where 1 + n(m− 1) is the total number of experiments to be performed.

Next, for each level setting Li,j we compute the experimental mean of all experiments

which use ths factor setting, i.e. where Li,j ∈ Ek. Let η̄(Li,j) denote the mean of the
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s/n ratios for all experiments containing level Li,j , η̄(Li,j) is given by

η̄(Li,j) =

∑
{ηk|Li,j ∈ Ek |
|ηk|Li,j ∈ Ek|

, (5.11)

where |Li,j ∈ Ek | is the number of number of experiments which use factor setting Li,j .

Each factor fi (i = 1, 2, ..., n) has an optimal level setting, denoted as L̂i, that

maximizes the s/n ratio η given by

(L̂i|L̂i ∈ Li ∧ η̄(L̂i) = max(η̄(Li))). (5.12)

Since the basic Taguchi method assumes that the experimental factors are indepen-

dent, then

η̄k = η̄ +

n∑
i=1

η̄(Li,j)|Li,j ∈ Ekdb (5.13)

and the experimental optimal, E∗, is the combination of the optimal level for each

factor

E∗ = L∗ = {L∗1, L∗2, ..., L∗n} (5.14)

The last step is transforming the experimental optimal, E∗, into the optimal external

parameters for the machine learning process. In order to translate the optimal experi-

ment back to the machine learning domain, we first map each optimal level setting L∗i

(i = 1, 2, ..., n) to a corresponding optimal value in the external parameter space α∗i
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(i = 1, 2, ..., n) for the machine learning model (Section 5.2).

Li ≡ α∗i (5.15)

The parameter vector, A∗, for the machine learning model that optimizes our objec-

tive, y(Φ(A;D)), is then given by:

A∗ = {α∗i , α∗2, ..., α∗n}. (5.16)

5.5 Application: Process Methodology for Predicting Service Request

Escalation

In this section we demonstrate the implementation of the representation-based model

shown in Figure 5.3 using the problem to predict whether or not a particular customer

support case will need to be escalated in priority in order to be resolved in a timely

manner. This problem was described earlier in Section 5.2

The treatment of the process methodology is organized into five parts—External,

Outside-In, Internal, Inside-Out, and Outer–corresponding to five layers of the Inte-

grated Meta-Representational Model. For each layer, we first identify the overall inputs

and outputs and the layer’s role in creating a solution to the overall problem. We then

describe the methods and techniques used at the layer to transform the inputs into out-

puts. Lastly, we walk through the implementation of the layer for the service request

escalation problem under consideration.

The networking company collected a data-set of 146,446 historical service requests to

use in order to use for learning the predictive model. Each historical service request, de-

noted di (i = 1, 2, ..., 146, 446), consists of a feature vector Xi and a label yi ∈ {−1,+1}
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indicating whether the service request was escalated (+1) or not (−1).

di = (Xi, yi) (5.17)

The learning task is to create the predictive model, denoted Φ, that for a given

feature vector X will determine the prediction label y.

Φ : X → y (5.18)

5.5.1 External Layer: Domain Knowledge Modeling

The External layer of the representation-based model, shown in Figure 5.3, addresses the

collection of the relevant domain knowledge about the model selection problem under

consideration. The representation of this domain knowledge is based on three models

from the CommonKADS methodology [Schreiber, 1994]. The Organization model is

used to represent the key organizational factors related to the decision process that the

classification model will automate. The Agent and Task models are used to represent

the work process and the structure of the individual tasks involved in decision process.

Together, these models capture these factors in a structured format that can be inte-

grated into the machine learning process in order to achieve our objective of optimizing

the model with respect to some performance criteria γ ∈ Γ.

The External layer process for applying the Organization and Agent/Task models is

as follows:

1. Organize the collected information using a CommonKADS Organization model

[Schreiber, 1994]. The process for creating the Organization model is as fol-

lows: a) Extract the key organizational components—context, people, processes,
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resources—from the information collected in Step 1; b) Create a diagram of the re-

lationships between these entities; c) Identify problems or challenges in the current

processes.

2. Interview network engineers about the currently manual work process for deter-

mining if a particular service request should be escalated. Techniques for work

process interviewing are discussed in [Schreiber, 1994].

3. Construct an Agent/Task model [Schreiber, 1994] for the current work process.

The process for creating the Agent/Task model is as follows: a) Create an agent

for each person or resource involved in the current work process; b) Create a task

for each step in the work process captured in Step 3; c) Relate agents to the tasks

that they perform. Label tasks performed by a single actor as << includes >>

and tasks performed by multiple actors as << uses >>.

4. Interview stakeholders about the high-level organization factors involved in es-

calation. Important information to collect includes current work processes, the

people and resources involved in these work processes, and cost metrics for the

escalation.

5.5.2 Outside-In Layer: Performance Metric and Signal-to-Noise Ratio for

Model Selection

The Outside-In layer of the representation-based model, shown in Figure 5.3, addresses

the translation of the service request costs from the External layer into a specific perfor-

mance metric for the machine learning model. The performance metric is then translated

into a corresponding s/n ratio that we are trying to maximize.

The process for identifying the appropriate performance metric and defining the

corresponding s/n ratio is as follows:
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1. Define the performance metric based on the Organization and Agent/Task model

from the External layer.

2. Identify the quality characteristic to be observed for the problem under consider-

ation. The selected quality characteristic should be easy to measure, continuous,

and monotonic. [Phadke, 1989]

3. Define the s/n ratio function to be optimized. The three main types of objective

functions for the quality characteristic are: smaller the better, nominal is the best,

and larger the better. A discussion of these objective functions can be found in

[Phadke, 1989].

The overall objective for the predictive model is to minimize the additional escalation-

related costs associated with resolving a set of service requests. In order to quantify

this objective we worked with domain experts to determine the following costs:

1. A typical service request costs approximately $250 to resolve.

2. Service requests that need to be escalated are considerably more expensive and

generally cost $250,000 to resolve because multiple support teams are involved and

the hardware replacement is often used to solve the problem in a timely manner.

3. Proactive escalation of a service request, before the customer requests an escala-

tion, will typically reduce the cost to $50,000 per a case.

Table 5.4 summarizes the additional escalation costs associated with each outcome.

The additional cost of a correct prediction (TP or TN) is $0. If we incorrectly escalate a

case that did not need to be escalated (FP) it costs $49,750 over the base-line ($50,000

- $250). Likewise, a missed escalation (FN) will incur an additional cost of $249,750

over the baseline $250 ($250,000 - $250).
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Escalated Not Escalated

Needed to
be Esca-
lated

$0.00 (TP) $249, 750 (FN)

Did not
need to be
Escalated

$49, 750
(FP)

$0.00 (TN)

Table 5.4: Estimated costs for escalating a customer service request

Let ŷi denote the predicted label for ith service request from the model Φ. There are

four possible cases for the prediction: true positive, true negative, false positive, and

false negative. A true positive (TP) is when the predicted label is escalate (ŷi = +1)

and the actual service request label is also escalate (yi = +1). Likewise, a true negative

(TN) is when both ŷi = −1 and yi = −1. Likewise, a false positive (FP) is when ŷi = +1

but (yi = −1) and a false negative (FN) is ŷi = −1 but yi = +1.

Let γi denote the additional escalation cost of ith service request incurred given by

Table 5.4.

γi =



$0 if TP,

$0 if TN,

$249, 750 if FN,

$49, 750 if FP,

(5.19)

We want to minimize the total cost, denoted C, of the escalations over s service

requests.

C =
s∑

i=1

γi (5.20)

Minimizing Equation 5.20 is equivalent to maximizing the following s/n ratio given
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by Equation 5.21.

η = −10log10[
1

s

s∑
i=1

γ2
i ] (5.21)

5.5.3 Internal Layer: Design of Experiments

The Internal layer of the representation-based model, shown in Figure 5.3, addresses

the task of designing a set of experiments that can be used to systematically compare

different parameter vectors for the machine learning model. The design of experiments

is performed using the Taguchi method ()[Taguchi and Konishi, 1987], [Phadke, 1989])

in order to minimize the number of experiments necessary to fully explore the design

space for the prediction model.

The process for applying the Taguchi method to design the experiments for the

service request escalation problem is as follows:

1. Identify the control, signal, and noise factors for the experiments. The control

factors are the factors that the knowledge engineer can control, in our case the

learning parameters that we are using to optimize the machine learning model.

The signal factors are the inputs to the experiment, in our case the historical

customer service requests. The noise factors are any elements of the experiment

that cannot be controlled by the knowledge engineer, e.g. the experience level of

the technical support engineer assigned to the case.

2. Determine the different possible levels or parameter settings for each control factor.

Potential control factors for the machine learning process include: the subset of

features used; the sampling scheme used to create the training/test data-set; and

the machine learning algorithm used to create the machine learning model.

3. Select the appropriate orthogonal array from the number of control factors, and
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Figure 5.4: Experimental factors for predicting service request escalation

the number of levels for each control factor. Assign each factor to a column in the

orthogonal array. Assign the factor levels to the array rows.

The Internal layer for the service request escalation problem resulted in the experi-

mental design shown in Table 5.6. In order to create this experimental design we first

modeled the service request escalation process is shown in Figure 5.4. The input signal

to this process is the set of service requests for which we need to determine an escalation

or no escalation label. Based on these labels there is a total escalation cost associated

with the service requests. The two parameters that influence the accuracy of the la-

beling, and therefore the total escalation cost, can be divided into two classes: noise

factors and control factors.

The noise factors for the learning process are the different workloads and levels of

experience for the support teams. For example, if a service request that would not

normally need to be escalated was assigned to an overloaded support team it could

have resulted in an escalation because the team did not respond the customer promptly.

Likewise, an exceptional support team could potentially avoid an escalation for a service

request that typically would have required an escalation. Since these factors are external
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Factor / Level 1 2 3

A. Machine
Learning Algo-
rithm

Naive Bayes Random Forests SVM

B. Classification
Structure

Cascade (Domain
Knowledge)

Cascade (Boost-
ing)

Flat (Binary)

C. Feature Selec-
tion

Manual (Domain
Knowledge)

Correlation (Chi-
Squared)

Information Gain

D. Class Imbal-
ance

Oversampling Undersampling Cost Sensitive
Learning

Table 5.5: Machine learning process parameters for predicting service request escalation

to the labeling they are noise factors for our problem.

Table 5.5 shows the set of control factors and parameter settings for the service

request escalation problem. There are four different control factors corresponding to the

four major steps in the machine learning process. The feature selection factor addresses

the method to be used to select subset features or attributes for the training/test data-

sets. The class imbalance factor captures the method used to address the unbalanced

distribution of positive and negative labels in the service request data-set. The learning

algorithm factor addresses the learning method to be used for generating the machine

learning model. Lastly, the classification structure factor addresses the model used to

generate the final service request labeling, e.g. single decision or a cascade of several

simpler decisions. The level settings for each of the four control factors, are shown in

Table 5.5 and discussed below.

We selected three well-known machine learning algorithms for the levels of the ma-

chine learning control factor: naive bayes, support vector machines, and Random Forests

([Witten and Frank, 2005], [Hastie et al., 2009]). The naive bayes algorithm creates a

simple probabilistic classification function based on applying Bayes theorem with strong

(naive) independence assumptions. The support vector machines algorithm finds the

separating hyperplane between the two classes in the data-set. Random forests is an

ensemble learning method that creates multiple decision trees at training time, and then
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combines the separate prediction results from individual decision trees.

The classification structure factor controls the application of the learning algorithms

to create the predictive model. The three level settings are: flat, boosting, and multi-

stage. The flat setting is a simple binary one-level classifier for classifying an incoming

service request. Boosting, which was discussed in Section 5.3, uses an ensemble of

classifiers to predict the final label. The third option, multi-stage, attempts to replicate

the existing manual process that engineers use to decide if a service request should be

escalated.

The multi-stage classification structure, shown in Figure 5.5, is implemented as a

cascade or series of machine learning models. The cascade processes makes three de-

cisions for each service request. First, is the problem described in the service request

a severe problem? Second, is the problem for a new or important product? Third, is

the problem from an important customer? Each of these decision will produce one of

three outcomes: no review, possible review candidate, or review. Any single review de-

cision or any two review candidate decisions will cause the service request to be labeled

“escalate”, otherwise, the service request will be labeled “do not escalate”.

The next step is to select the corresponding orthogonal array for planning the exper-

iments. Table 5.5 shows that we have four factor, each with three levels. Therefore, if

we assume that the control factors are independent, then for the case of the four factors

we need to perform 9 (1 + 4(3− 1)) experiments to determine the optimal level setting

for each of the four factors. It is important to note that a factorial experimental design

for testing these factors would require 81 (34) experiments while the Taguchi method

only requires 9 experiments.

The corresponding L9 orthogonal matrix for organizing these nine experiments was

selected from [Phadke, 1989] and is shown below in Table 5.6. Each row in Table 5.6

describes one experiment that will need to be performed. For example, in experiment
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Figure 5.5: Multi-stage classifier cascade for predicting service request escalation
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Experiment Machine Learning
Algorithm (f1)

Feature Selec-
tion (f2)

Classification
Structure (f3)

Class Imbal-
ance (f4)

E1 Naive Bayes Domain
Knowledge

Cascade (Domain
Knowledge)

Oversampling

E2 Naive Bayes Correlation Cascade (Boost-
ing)

Undersampling

E3 Naive Bayes Information
Gain

Flat (Binary) Cost Sensitive
Learning

E4 SVM Domain
Knowledge

Cascade (Boost-
ing)

Cost Sensitive
Learning

E5 SVM Correlation Flat (Binary) Oversampling

E6 SVM Information
Gain

Cascade (Domain
Knowledge)

Undersampling

E7 Random Forest Domain
Knowledge

Flat (Binary) Undersampling

E8 Random Forest Correlation Cascade (Domain
Knowledge)

Cost Sensitive
Learning

E9 Random Forest Information
Gain

Cascade (Boost-
ing)

Oversampling

E∗ Random Forest Information
Gain

Domain Knowl-
edge

Cost Sensitive
Learning

Table 5.6: Orthogonal array of the nine experiments for the service request escalation
prediction model

3 (E3) the classification function, Φ is created using a naive bayes learning algorithm

with features selected using based on information gain, and the misclassification costs

are weighted according the to the escalation costs.

5.5.4 Inside-Out Layer: Experimentation

The Inside-Out layer of the representation-based model, shown in Figure 5.3, addresses

the implementation of the planned experiments from the Internal layer.

The process for implementing the experiments is as follows:

1. Perform each experiment by constructing the machine learning model correspond-

ing to the parameters specified in the experimental design.
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Experiment TP TN FP FN S/N (db)

E1 130894 521 14575 456 -125.619

E2 124397 672 21072 305 -128.768

E3 130780 557 14689 420 -125.675

E4 120055 766 25414 211 -130.385

E5 11550 759 29919 218 -131.801

E6 124812 707 20657 270 -128.592

E7 136821 956 8648 21 -121.017

E8 137508 961 7961 16 -120.298

E9 138385 963 7084 14 -119.284

E∗ 140608 899 4861 78 -116.031

Table 5.7: Evaluation of the service request prediction models with respect to total cost

2. Apply the machine learning model to the test data-set and record the prediction

decision, escalate or do not escalate, for each service request. Record the number of

true positives (TP), true negatives (TN), false positives (FP), and false negatives

(FN) for each machine learning model.

3. Compute the corresponding s/n ratio for each experiment by computing Equation

5.21 from the Outside-In layer using the TP, TN, FP, FN counts from Step 2.

For the service request escalation problem the nine experiments shown in Table

5.6 were implemented using knowledge flows in the Weka machine learning workbench

[Witten and Frank, 2005]. Each knowledge flow consisted of four sequential steps:

training/test data-set, feature selection, model learning, and evaluation. The predictions

from Weka were then processed using a series of scripts, written in Ruby, in order to

compute the s/n ratios and total costs. Table 5.7 shows the counts for true positives

(TP), true negatives (TN), false positives (FP), false negatives (FN), and the resulting

s/n ratio for each of the nine experiments. The experimental results will be discussed

in detail in Section 5.6.
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Factor Factor Level Factor Effect (db)

Machine Learning Algorithm Naive Bayes -1.29

Machine Learning Algorithm SVM -4.86

Machine Learning Algorithm Random Forests 5.2

Feature Selection Domain Knowledge -0.27

Feature Selection Correlation -1.55

Feature Selection Information Gain 0.884

Classification Structure Cascade (DM) 0.56

Classification Structure Cascade (Boosting) -0.74

Classification Structure Flat -0.76

Class Imbalance Oversampling -0.167

Class Imbalance Undersampling -0.72

Class Imbalance Cost Sensitive -0.05

Table 5.8: Factor effects for the machine learning model

5.5.5 Outer Layer: Optimization of the Model Parameters

The Outer layer of the representation-based model, shown in Figure 5.3, addresses the

analysis of the experimental results from the Inside-Out layer in order to determine

the factor settings that maximize the s/n ratio. The Analysis of the Means (ANOM)

process for analyzing the experimental results is described in detail in Section 5.4.2.

This section focuses on the experimental results of applying this process to the service

request escalation problem.

The experimental results for the service request escalation problem from the Inside-

Out layer consists of the s/n ratios computed for each of the nine experiments shown in

5.7. The signal to noise ratio for each factor level was calculated as the average s/n ratio

of all the experiments that contained that factor level (Equation 5.11). For example,

the naive bayes algorithm is a factor in experiments 1, 2, 3 and, therefore, the s/n value

for the naive bayes setting is the average of experiments 1, 2, and 3 (see Table 5.6).

Table 5.8 shows the s/n ratios for each of the three level settings for the four control

factors.

We now select the optimum level for each factor in order to maximize the s/n ra-
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tio (Equation 5.14). From the results of Table 5.8, the combination that yields the

maximum s/n ratio is as follows:

• Machine Learning Algorithm: Random Forests

• Feature Selection: Information Gain

• Classifier Structure: Cascade (Domain Knowledge)

• Unbalanced Data: Cost Sensitive

The predicted s/n ratio for this machine learning model is −119.1 db. Lastly, we

perform a verification experiment to confirm that the optimal settings do produce ma-

chine learning model with a s/n ratio that is relatively close to the predicted s/n ratio

and is larger than the experimental maximum s/n ratio of −119.284 db in Experiment

9. Using the false negative (FN) and false positive (FP) values from 5.7, we obtain a s/n

ratio of −116.031 db. Since the s/n ratio of the predicted optimal is significantly larger

then the experimental maximum (−119.284) db, we have confirmed that the predicted

settings are actually optimal.

5.6 Results: Predicting Service Request Escalation in the Computer

Networking Domain

In this section we examine the results for service request escalation problem in order

to evaluate the effectiveness of the statistical Design of Experiments (DOE) approach

to machine learning model selection. To this end, the results are organized into two

parts. First, we review the results with respect to the problem‘s performance metric

of interest, the total cost associated with a set of service requests. We then review the

results with respect to a set of more general performance metrics that are independent

to the service request escalation problem. Based on these two sets of results, we discuss

the effectiveness of the DOE approach and draw conclusions.
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Experiment Total Cost ($M) Accuracy f-measure g-mean

E1 816.3 89.73 94.00 69.14

E2 1109.3 85.40 91.50 76.67

E3 814.7 89.70 94.00 71.60

E4 1306.5 82.50 89.80 80.40

E5 1530.2 82.50 89.80 80.40

E6 1306.5 85.71 91.70 78.24

E7 434.4 94.10 96.40 95.90

E8 399.3 94.55 96.70 96.43

E9 355.2 95.10 97.00 96.80

E∗ 257.5 96.62 98.27 98.28

Table 5.9: Evaluation of the service request prediction models with respect to total cost,
accuracy, f-measure, and g-mean

The results for each experiment with respect to our objective of minimizing total cost

are shown in Table 5.9. First, we note that the DOE approach produces an combination

of values for the external model parameters that is optimal with respect to the total

escalation cost. We further note that the combination of parameters for the optimal

model is not in the set of parameters tested in the nine experiments.

Second, we note that although the difference between the optimal model and best

experimental model was relatively small ($97.5M); the difference between the average

($639.5M) and worst case experimental model ($1246M) is significantly larger. This

indicates that there is large amount of variability in the total cost based on the external

parameters and learning algorithm used to create predictive model.

Third, we note that the experimental results show that the models that used the

Random Forest learning algorithm (E7, E8, E9) clearly out-performed the models using

the naive bayes and support vector machines learning algorithms. The DOE approach

allows a more comprehensive understanding of the experimental results where the user

can quantitatively assess the influence of the different external parameters in the ma-

chine learning model. Using Table 5.8 we can draw the following conclusions about the

variation in the performance of the models with respect to total cost:

132



www.manaraa.com

1. The machine learning algorithm has the largest impact on the overall escalation

cost.

2. Using a classifier cascade based on domain knowledge provides a slight benefit

over a flat or boosted classification structure.

3. Cost sensitive learning did not make a significant difference. This is surprising

considering that the costs are also part of the quality characteristic we are trying

to minimize.

4. The use of domain knowledge models is beneficial for more complex machine learn-

ing tasks such as creating a multi-stage classifier. However, simpler tasks, such

as feature selection, can successfully be automated using unsupervised machine

learning without creating domain knowledge models.

Table 5.9 also shows the evaluation of the nine experiments and using accuracy, f-

measure, and g-mean—three well-known evaluation metrics that are commonly used to

evaluate the performance of machine learning models. Accuracy is the most commonly

used single metric for evaluating machine learning models but is not necessarily an

appropriate metric when the data-set is unbalanced because false positives and false

negatives are equally weighted. We therefore also include the g-mean (geometric mean)

and f-measure which are based on the precision and recall of the model. We note that the

results for these metrics shown are consistent with total cost results discussed earlier.

The optimal model has the best performance in the experimental space on all three

evaluation measures. Most importantly, the optimal classification model outperforms

the baseline experiments for both the f-measure and g-mean evaluation metrics.

The evaluation of the provided in Table 5.9 demonstrates that the DOE approach

produces the optimal model with respect to the total cost performance metric for the

service request escalation problem. As mentioned in Section 5.4, model selection is usu-

ally a compromise between efficiency and comprehensively exploring the experimental
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space. For the service request problem it was not feasible to run the 81 experiments

necessary for a factorial design. Although, heuristics would have allowed us to reduce

this search space, it would have been at the expense of being comprehensive. The DOE

approach allowed us to balance being comprehensive with being efficient. As a result

we were able to not only identify the optimal model for the service request escalation

problem but also determine the theoretical performance bounds for a model in the

designated parameter space.

5.7 Conclusions

In this chapter we have formalized the notion of an external parameter vector for the

machine learning model that represents the engineering application specific decisions

that the user needs to make in the machine learning process, such as feature selection

and the creation of the training/test data-set. We then developed a simple process based

on the Taguchi Design of Experiments (DOE) methodology to solve the model selection

problem with respect to these external parameters including the learning algorithm.

We have demonstrated the application of the Taguchi based DOE approach to ma-

chine learning model selection in the context of a real-world problem in the computer

networking domain which involved predicting service request escalation. For the ser-

vice request escalation problem we found that being able to comprehensively explore

the external parameter space resulted in a significant improvement in the classification

function‘s performance with respect to the objective function of minimizing total cost

as well as standard metrics such as accuracy and F-Measure.

For the problem of predicting service request escalation, we found that a statistical

DOE based approach to optimizing the external parameters was a practical alternative

in between an ad-hoc build-test-fix approach and using a full factorial experimental

design to test all possible models. One of the key advantages to the statistical DOE
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method is it can simplified depending on the complexity and resource constraints of the

problem under consideration. For simpler problems or when there are time constraints,

we can assume no interaction between the factors and apply the approach described

in Section 5.4. If additional time and resources are available, the user can relax this

assumption and apply more sophisticated DOE techniques [Phadke, 1989] that test for

interactions and then adjust the experimental design accordingly.
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6 Developing High-Value Knowledge Engineering Software

Products: Theory, Application, and Implementation

In this chapter we address the application of the representation-based framework, de-

veloped in Chapter 3, to the problem of developing knowledge engineering software

products. Knowledge engineering processes are often largely manual and extremely in-

efficient in both cost and time. Therefore, software automation of these manual activities

through the creation of highly user-centric Knowledge Engineering Software Products

(KESPs) is critical to enabling the rapid and efficient extraction of high-quality knowl-

edge.

The primary intent of this chapter is to provide a comprehensive theory, including

its application and implementation, for developing high-value KESPs. The applica-

tion of the IMRM to the development of high-value KESPs resulted in the Integrated

Representation-Based Process Methodology (IRPM) which combines, in a rational and

structured manner, methods and tools from the technical domains of Knowledge Engi-

neering, Product Design, and Software Engineering. We demonstrate the feasibility of

the IRPM by implementing it within the context a real knowledge engineering problem

involving the extraction of problem-solution pairs from customer service requests in or-

der to create “smart” products and services. The developed KESP, called the “Service

Request Portal” (SRP), used problem-specific search and content filters which achieved

a 30% productivity improvement over the previously manual work process.

The chapter is organized as follows. Section 6.2 develops three simple requirements

for high-value Knowledge Engineering Software Products (KESPs) and motivates the

need for methods and tools from multiple domains. Section 6.3 surveys related work

in the three KESP subject matter domains: knowledge engineering, product design,

and software engineering. Section 6.4 describes the application of the Integrated Meta-

Representational Model (IMRM) to KESP development. Section 6.5 provides the pro-
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cess for applying the resulting representation-based model and demonstrates its imple-

mentation to a knowledge engineering problem at a large computer-network company.

Section 6.7 provides the evaluation of the developed KESP with respect to the three

requirements for high-value.

6.1 Introduction

This chapter addresses the design and development of high-value Knowledge Engineering

Software Products (KESPs). The purpose of this section is to properly motivate this

problem, outline the research issues involved, and describe our key contributions.

6.1.1 Background

Rapid and cost effective knowledge engineering requires the automation of largely man-

ual activities through the creation of user-centric Knowledge Engineering Software Prod-

ucts (KESPs). Unlike commercially available data mining software, KESPs are custom

software products that must be specific to the knowledge engineering process that needs

to be automated. Therefore, the development of these KESPs involves three high-level

tasks:

1. Modeling the activities in the currently manual knowledge engineering processes

that need to be automated.

2. Designing high-quality, cost effective, products for automating the manual activi-

ties.

3. Developing software product implementations that are easy to use, reliable, and

maintainable.
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It is important to differentiate the ”modern” KE systems addressed in this thesis

from ”classical” KE systems such as expert systems. Classical KE systems primarily

address the problem of codifying human knowledge so that can be reused throughout

the organization. We are interested in ”modern” KE system that provide software

automation to support existing work process and enable knowledge workers to efficiently

work with massive amounts of data. Because modern KE systems involve integrating

software systems into existing work processes, they share a number of similarities with

Decision Support Systems (DSSs). However, DSSs generally operate with structured

data, while modern KE systems support processes involving unstructured data. Table

6.1 highlights some of the key differences between classical KE systems, modern KE

systems, and DSSs.

Modern Knowl-
edge Engineering
System

Classical Knowl-
edge Engineering
system

Decision Support
System

Knowledge source Unstructured data Domain experts Structured data
Type of problems Unstructured Structured Semi-structured

Users Domain experts Non-experts Managers
Level of interactivity High Low High

Computational requirements Medium - high Low - medium Medium - high
Development challenges Work-process inte-

gration (usability,
adoption, etc.)

Knowledge capture
and representation

Data integration

Table 6.1: Comparison of modern Knowledge Engineering systems, classical knowledge
engineering systems, and decision support systems

Three important requirements for successful Knowledge Engineering (KE) system

development are as follows: First, the KE system must be tightly integrated into the ex-

isting work processes in order to maximize the overall productivity of the end-users. Sec-

ond, the KE system must be a high-quality product—reliable, easy to use, attractive—in

order to be adopted by the end-users (knowledge workers). Third, the KE system must

be high-impact and low-cost in order to a good investment for the organizations. Ad-

dressing of these three requirements requires a multi-disciplinary approach based on the

following three domains:
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• Knowledge Engineering: provides tools for modelling end-users work processes

in order to tightly integrate the system into existing work processes.

• Product Design and Development: provides formal tools for explicitly identi-

fying end-user needs for the system, exploring different function realizations, and

managing the inevitable trade-off between quality and cost.

• Software Engineering: provides tools and techniques for efficiently developing

robust and reliable software systems.

While there are a number good methodology for classical KE system development,

such as CommonKADS [Schreiber, 1994] and MIKE [Angele et al., 1992], there is a

lack of mature methodologies for developing modern Knowledge Engineering systems.

Consequently, the selection and application of methods from these three domains is

often ad-hoc, and, being ad-hoc, suffers from a number of issues including: insufficient

capture the end-users’ existing work-process, focus on the technical aspects of the system

rather than users’ needs, and lack of user involvement during system development.

The combination of these factors, in particular the lack of attention to the user and

organizational needs for the system, frequently results in the deployment of these system

not yielding useful results.

6.1.2 Research Issues

Given that several diverse engineering disciplines are required to successfully address

the KESP development tasks, described in the previous section, this problem involves

research issues at three levels:

1. Theory: The formulation of a general framework, for organizing the activities—

defining requirements, system design, software development, testing, etc.—and the

engineering subject-matter domains—knowledge engineering, product design and
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development, and software engineering—involved in the development of Knowl-

edge Engineering Software Products.

2. Application: The specialization of the high-level framework to generate an inte-

grated process methodology for developing Knowledge Engineering Software Prod-

ucts.

3. Implementation: The validation of the process methodology within the context

of a real knowledge engineering problem in industry.

6.1.3 Contributions

The contributions of our research directly address the three levels of research issues—

theory, application, and implementation—discussed in the previous section. The first

contribution provides a general theory for selecting and integrating methods and tools

from multiple domains. The second and third contributions are specific to application

and implementation of this theory for the purposes of developing high-value Knowledge

Engineering Software Products.

1. Theory: We have applied the Integrated Meta-Representational Model to first

identify, and then select methods and tools from three engineering subject-matter

domains—knowledge engineering, product design, and software engineering domains—

for the purposes of addressing the development of knowledge engineering software

products. (See Section 4.4.)

2. Application: We developed a process methodology, called the Integrated Representation-

Based Process Methodology (IRPM), that provides the theoretical framework for

using the selected methods for the purpose of developing Knowledge Engineer-

ing Software Products (Section 6.5). The knowledge engineering domain provides

tools—such as the CommonKADS Agent/Task model—for modeling current work
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processes that the KESP will automate. The product design domain provides for-

mal tools—such as the House of Quality, Function Structure, Morphological Ma-

trix, and Utility Function—for explicitly defining the user needs for the KESP and

exploring different design concepts in order to ensure the KESP is high-quality

and low-cost. The software engineering domain provides tools—such as the UML

Use Case, Component, and Class diagrams—in order to ensure that a reliable and

user-centric KESP is delivered rapidly and at low cost. We have also shown how

the IRPM can be simplified for situations where there are time constraints or the

knowledge engineering process being automated is not overly complex (Section

6.7.4).

3. Implementation: We have demonstrated the feasibility of the IRPM within the

context of a knowledge engineering problem involving the extraction of problem-

solution pairs from customer service requests in order to create “smart” products

and services. The developed KESP, called the “Service Request Portal” (SRP),

improved productivity by over 30% compared to the previously used tools, was

well received by the users, and was developed within the organizations budget and

schedule constraints. (Section 6.7).

6.2 Problem Formulation

In this section we establish the need for a multi-disciplinary approach to the development

of Knowledge Engineering Software Products (KESPs), and outline the tasks involved

in creating such an approach. We start with a brief discussion of the requirements

for high-value KESPs. Next, we use a real-world knowledge engineering problem in the

computer-networking domain to concretely illustrate the issues and challenges that come

up when attempting to satisfy these requirements in practice. Further examination of

these issues motivates the need for a multi-disciplinary approach involving methods and

techniques from the domains of knowledge engineering, product design, and software
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engineering. We conclude by describing the tasks involved in creating and applying a

theoretical framework to integrate the methods from these three domains.

6.2.1 Three Requirements for High-Value Knowledge Engineering Software

Products

This chapter addresses the development of high-value Knowledge Engineering Software

Products (KESPs) that automate currently manual knowledge engineering processes in

order to produce higher-quality solutions faster and at lower cost. To this end, we have

developed three simple requirements that can be used to assess whether a KESP delivers

high-value.

First and foremost, the KESP must be high-quality with respect to the user needs.

Here, high-quality has two aspects. The first part (requirement R1a) addresses the

integration of the KESP with the existing knowledge engineering work processes. The

second part (requirement R1b) addresses the user experience with the KESP.

Requirement 1a (R1a): The KESP must be seamlessly integrated with the cur-

rent, largely manual, end-user work process.

Requirement 1b (R1b): The KESP must be reliable, high-quality, and easy to

use.

The second set of requirements relate to the direct impact of using the KESP on the

productivity of the end-users (requirement R2a) and to the indirect impact of using the

KESP on the organization (requirement R2b).

Requirement 2a (R2a): The KESP must improve the productivity of the end-

users, e.g. enable higher-quality results to be produced significantly faster.

Requirement 2b (R2b): The use of the KESP must help the organization develop

higher-quality and/or lower cost products and services.
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Finally, it is also necessary to balance quality with development costs (time and

resources) to ensure the KESP is high-value.

Requirement 3 (R3): The KESP must be developed rapidly and at low cost.

In order to concretely illustrate the three requirements for high-value consider the

following knowledge engineering problem at a large company that develops and supports

enterprise computer networking products. Every day the company’s service centers re-

ceive thousands of customer service requests (commonly referred to as ”trouble tickets“)

on a wide variety of product problems. Each service request is assigned to a Technical

Support Engineer who works with the customer to resolve the problem. After the prob-

lem is resolved the associated service request document containing the correspondence

(emails, phone calls, etc.) between the customer and the Technical Support Engineer

is archived in a relational database. This database contains millions of service requests

that can be used to improve product support for existing products as well as to design

new products.

The company has a team of Network Knowledge Engineers (NKEs) that search

through the resolved service requests in order to extract problem-solution pairs for fre-

quent customer problems. These problem-solution pairs are then used by the company

to improve product support and develop new product. The current, largely manual, pro-

cess for extracting problem-solution pairs consists of two high-level activities: searching

for relevant service requests to a particular problem, and reading the relevant service

requests in order to extract problem-solution pairs. The NKEs currently use a search

engine to perform keyword searches in order to locate relevant service requests, and a

web-based viewer to read the service requests.

The NKEs’ manual work process is very inefficient because of the following problems:

1. Precision problem: Keyword searches typically return in an large number of

search results that are time consuming to evaluate for relevance. Furthermore,
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keyword searches can not be narrowed down using service request attachments

such as device configuration files.

2. Summary problem: The service request documents do not include a clear de-

scription of the solution that resolved the customer’s problem.

3. Repetition: The service request documents typically contain a large amount of

repetition in the form of repeated email threads and redundant case notes.

The “precision” problem impacts the information retrieval aspects of the NKE work

process and requires the NKEs to manually evaluate a large number of irrelevant search

results. The “summary” and “repetition” problems impact the extraction of problem-

solution pairs from relevant service requests. In particular, the long length of each

service request (typically 30-50 pages of free-form text) in combination with the presence

of irrelevant email threads, poorly formatted text, and duplicate content make reading

each service request difficult and time consuming.

From the perspective of the NKEs, the KESP problem statement is as follows: de-

velop a software product to automate the tedious and manual aspects of extracting

problem-solution pairs. In particular, the NKEs would like the software product to

make it easier to find relevant service requests for a particular product problem (the

“precision” problem) and extract the problem-solution pairs from a given service request

(the “summary”, and “repetition” problems).

From the perspective of the networking company, the KESP problem statement is

as follows: develop a software product to improve the productivity of the NKEs and

decrease the cost of developing problem-solution pairs.
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6.2.2 The Multi-Disciplinary Approach

Developing a high-value Knowledge Engineering Software Product (KESP) to address

the NKE’s problem and the networking company’s problem requires methods and tech-

niques from three related but distinct subject matter domains. First, in order to create

an integrated product (requirement R1a) that significantly improves the productivity

of the NKEs (requirement R2a) we need formal methods from the knowledge engineer-

ing domain to model the work-process for developing problem-solution pairs. Second,

developing a high-quality product (requirements R1b and R2a) requires product de-

sign methods to tightly couple the NKEs in the KESP design and development process.

Third, in order to rapidly build the KESP at low cost (requirement R3 ) we need software

engineering methods to manage the software design and development processes.

The selection and application of methods and techniques from the knowledge engi-

neering, product design, and software engineering domains involves the following tasks:

1. Create a model for the activities involved in KESP development. (Section 6.4)

2. Apply the model to select the necessary knowledge engineering, product design,

and software engineering methods for KESP development. (Section 6.4)

3. Integrate the selected methods into a process methodology for KESP development.

(Section 6.5)

4. Demonstrate the feasibility of the process methodology within the context of a real

knowledge engineering problem and assess the results (Section 6.5 and Section 6.7).

6.3 Literature Survey

In this section we survey related work in the three subject matter domains involved

in the development of Knowledge Engineering Software Products (KESPs): Knowledge
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Engineering, Product Design, and Software Engineering. Since many readers may not

be familiar with all three of the domains, we start with a brief background to some of

the key methods for each domain. We then expand on the strengths and weakness of

each domain in order to further motivate the need for all three domains when developing

high-value KESPs.

6.3.1 Knowledge Engineering

The Knowledge Engineering domain encompasses a large body of work spanning many

different areas including: artificial intelligence [Winston, 1992], knowledge represen-

tation [Brachman and Levesque, 2004], expert systems [Schreiber, 1994], data mining

[Witten and Frank, 2005], and information retrieval [B. et al., 2009]. Our work draws

on three key knowledge engineering areas: expert systems, information retrieval, and

data mining. We use methodologies from expert systems to model the currently man-

ual work processes for knowledge extraction. Since Knowledge Engineering Software

Products generally contain either information retrieval or data mining components, or

a combination of the two, we also draw on standard methods and techniques from infor-

mation retrieval and data mining to implement the KESP. The specific KESP described

in this work (Section 6.5) contained information retrieval functionality that was layered

on top of search engine infrastructure that already existed at the organization.

CommonKADS [Schreiber, 1994] is a well-known methodology for creating expert

systems that consists of three perspectives (sets of models) that guide the design and

development of expert systems. The first perspective addresses the organizational envi-

ronment in which the expert system will operate and is used to understand the objectives

for the expert system and how it will fit into existing work processes. The second per-

spective addresses the knowledge components of the system and provides models for

identifying and structuring the domain expert knowledge necessary for solving a par-

ticular task. The third perspective addresses the design of the system architecture and
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computational mechanisms for expert system.

CommonKADS, and other related modeling methodologies, provide methods for

identifying organizational opportunities for the KESP development process and struc-

turing end-user work processes (requirements R1a, R2a, R2b). However, these method-

ologies generally have limited support for implementing these models into software prod-

ucts. In particular, the models are generally not integrated with standard software

engineering tools, such as the Unified Modeling Language, which makes it difficult to

develop KESP software implementations.

There are several expert system methodologies that specifically address the imple-

mentation aspects of the development process. The Model Based Incremental Knowl-

edge Engineering (MIKE) methodology [Angele et al., 1992] adds a formal specification

language, called KARL, to the CommonKADS models which enables rapid prototyping

and incremental development. However, this specification language is specific to expert

systems and not suitable for KESP development.

6.3.2 Product Design

In most organizations, once knowledge engineering issues are addressed, development

typically proceeds directly to addressing software engineering issues. In our view this

fails to leverage valuable tools in the product design domain that enable different design

concepts to be generated and assessed with respect to development trade-offs. In this

section we provide a brief overview of the Product Design methods for conceptual design

and discuss the strengths and weaknesses of these methodologies with respect to the

three value requirements developed in Section 6.2.

Product Design methods for conceptual design fall into three general areas: specify-

ing the design space, exploring the design space (generating alternative design concepts),

and selecting design concepts. Two well-known methods for specifying the design space
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are the House of Quality [Hauser and Clausing, 1988] and Function Structure [Pahl and

Beitz, 1996] methods. The House of Quality relates user (customer) needs to measurable

engineering metrics that can be used to design the product. The Function Structure

method establishes the functional (input-output) relationships between the requirements

for the product. Once the requirements for the product are specified, the Morphological

Matrix [Pahl and Beitz, 1996] provides a systematic approach for exploring the space

of possible solution-principles (realizations) and combining solution principles in order

to generate alternative design concepts. The Utility Function method [Pahl and Beitz,

1996] then provides a quantitative approach to comparing the utility of alternative de-

sign concepts with respect to selection criteria (objectives) in order to select the concept

that maximizes the cumulative utility across all the selection criteria.

The core product design methods described above have been integrated into a num-

ber of well-known methodologies for designing new products. The Engineering Design

methodology [Pahl and Beitz, 1996], illustrated in [Hubka et al., 1988], provides a func-

tional approach—based on Function Structures, Morphological Matrices, and Utility

Functions—for developing a design concept for the product. The Product Design and

Development methodology [Otto and Wood, 2000] builds on the functional approach in

the Engineering Design methodology by adding the House of Quality and other tech-

niques for capturing user needs for the product. The Total Design methodology [Pugh,

1991] uses a process called controlled convergence, based on the utility function method,

to iteratively generate and evaluate alternative designs and converge on a design concept

for the product.

The product design domain provides structured methods and tools for capturing

user needs and using these needs to guide the design of the product. In particular, the

product design methods allows for the trade-offs between quality and cost to assessed

in an analytical manner. However, most of these methods were originally created for

designing physical products and do not directly address important of software products
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such as data structures. Consequently, these product design methods need to be com-

bined with software engineering methods and techniques in order to develop software

products.

6.3.3 Software Engineering

A wide range of software engineering methodologies have been proposed over the last

30 years. The Waterfall model [Schach, 2008] uses a sequential development process

composed of five stages: requirements, design, implementation, verification, and main-

tenance. The Spiral model [Schach, 2008] expands on the Waterfall model and adds

support for risk analysis and prototyping. Iterative and Incremental Development [Mc-

Connell, 1996] uses increments, rapid build and test cycles, with user feedback to itera-

tively develop software. Agile Processes [Schach, 2008]—such as Extreme Programming

(XP), Crystal, and Scrum—expand on Iterative and Incremental Development with

timeboxing and user participation during the design process. All of these method-

ologies are supported by the Unified Modeling Language (UML) [Schach, 2008] which

provides a standard specification language for software systems.

These software engineering methodologies provide methods for developing high-

quality software with respect to the user experience (robust, reliable, easy to use).

However, these methodologies generally follow a direct path between the requirements

for the system and implementation of the system and do not include a conceptual design

stage where multiple alternative approaches for the implementing the specifications are

explored and evaluated. Although this direct approach is sufficient for implementing

straightforward technical systems, it generally is not sufficient for KESP development

which involve complex value trade-offs between the needs of the end-users and the needs

of the organization.

It is important to note, there are software engineering methodologies that address
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these gaps by providing tools for capturing existing work processes (requirements R1a,

R2a, R2b) and balancing quality with costs (requirement R3 ). Jackson System Design

[Jackson, 1983] and Problem Frames [Jackson, 2001] provide methods for analyzing and

structuring software development problems. Value Based Software Engineering (VBSE)

[Boehm, 2003] addresses some aspects of the conceptual design stage by integrating

value considerations into existing software engineering methodologies through the use

of practices such as Business Case Analysis, and Concurrent Engineering. While these

methodologies are useful, they do not provide comprehensive (end-to-end) approach to

addressing the value requirements. For example, both Jackson System Development

and Problem Frames contain tools for modeling the relationships between the software

system and the end-users, but lack tools for modeling user work-processes. Similarly,

VBSE introduces useful practices for addressing value considerations, but lacks methods

for generating multiple design concepts—a critical step in developing high-value KESPs.

6.4 Theory: Representation-Based Model for the Development of Knowl-

edge Engineering Software Products

The application of the Integrated Meta-Representational Model (IMRM) facilitated the

integration of methods and tools from knowledge engineering, product design, and soft-

ware engineering domains into the Integrated Representation-Based Process Methodol-

ogy (IRPM) for the development of high-value Knowledge Engineering Software Prod-

ucts (KESPs). This section describes the results for each of the three steps in applying

the IMRM.

Table 6.2 shows the layers, representational subject matters, domains, and meth-

ods for KESP development. The External layer uses the Organization and Agent/Task

CommonKADS models [Schreiber, 1994] from the knowledge engineering domain to

model the currently manual work process that needs to be automated. The Outside-In

layer uses the House of Quality method [Hauser and Clausing, 1988] and UML Use
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Layer Subject Matter
Domains and Representational Methods/Tools

Knowledge Engi-
neering

Product Design Software Engineer-
ing

External Organizational
context and cur-
rently manual
Knowledge En-
gineering work
process

CommonKADS
Organization,
Agent, and Task
Models

Outside-In User needs for soft-
ware automation

House of Quality Use Case Diagrams

Internal Conceptual de-
sign (functional
specifications,
solution-principles,
design concept for
the product)

Function Struc-
ture, Morphologi-
cal Matrix, Utility
Function

Inside-Out Software design
(architecture, data
structures, algo-
rithms, control
logic)

UML Compo-
nent and Class
Diagrams

Outer Software develop-
ment (planning,
implementation,
and testing)

Iterative and Incre-
mental
Development

Table 6.2: Layer-subject matter-representational tools/methods matrix for knowledge
engineering software products

Case diagrams [Schach, 2008] to capture the end-user needs and desired user experience

for the KESP. The Internal layer uses the Function Structure [Pahl and Beitz, 1996],

Morphological Matrix [Pahl and Beitz, 1996], and Utility Function [Pahl and Beitz,

1996] methods from the product design domain in order to explore different function

realizations for the software automation and manage the inevitable trade-offs between

quality and cost. The Inside-Out layer uses the Unified Modeling Language Compo-

nent and Class diagrams [Schach, 2008] from the software engineering domain to create

the software design for the KESP. The Outer layer uses the Iterative and Incremental

development methodology [McConnell, 1996] from the software engineering domain to

develop the KESP software implementation.

Figure 6.1 shows representation-based model that resulted from integrating the meth-

ods and tools from Table 6.2. Each information flow is depicted as directional arrow
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that shows the relationship between the inputs and outputs of two methods (with the

exception of information flow (7) which involves the output of two different methods).

This input-output integration of the methods and tools allows for the three KESP value

requirements (Section 6.2) to be incrementally addressed as we progress from the Ex-

ternal to the Outer layer. Each layer adds value by either aligning the results from

the previous layer with one or more of the value requirements and/or implementing the

value created a previous layer.

The representational-based model is implemented by sequentially stepping through

each layer shown in Figure 6.1 starting with the initial state or high-level user need as

follows:

1. External layer: take the high-level user need (see (1) in Figure 6.1) from the

initial state as input and create the CommonKADS Organization and Agent/Task

models of the current work processes. These models address value requirements

R1a, R2a, R2b by aligning the KESP with the high-level user needs and work

process.

2. Outside-In layer: use the work process model (2) to create a House Quality and

set of Use Case diagrams for the KESP. The Outside-In layer captures what the

end-users want from the product and ensures that the KESP is high quality with

respect to the user needs (value requirements R1a and R1b).

3. Internal layer: use the user requirements (3)(5) and Use Case diagrams (4) to

create the Function Structure, Morphological Matrix, and Utility Function for the

KESP. The Internal layer methods address value requirements R1a, R1b, R2a,

R2b, and R3 by ensuring that the KESP is functionally complete and provides a

good balance of quality and cost with respect to the user needs.

4. Inside-Out layer: create a UML Component diagram and corresponding set

of UML Class diagrams to transform the design concept (6)(7) into a software
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Figure 6.1: Representation-based model for knowledge engineering software product
development

design for the KESP. The Inside-Out layer indirectly addresses requirements R1a,

R1b, R2a, R2b, and R3 by ensuring the product design results from the Internal

layer are accurately translated into Software Engineering constructs that can be

developed at the Outer layer.

5. Outer layer: implement the software architecture (8) and classes (9) to produce

the KESP that satisfies the goal state (10). The Outer layer ensures that the

KESP addresses value requirements R1a, R1b, R2a, and R2b.

The comprehensive (step-by-step) implementation of the IRPM is provided in the

following section (Section 6.5).

6.5 Application: Process Methodology for Knowledge Engineering

Software Product Development

In this section we provide the step-by-step process for implementing the five layers of

the representation-based model shown in 6.1. The methods and techniques at each

layer are illustrated using the quality monitoring and assessment problem described in
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Section 6.2 involving the ASA 5505 computer network security product.

6.5.1 External Layer: Modeling the Organization Context

The development of a Knowledge Engineering Software Product (KESP) starts with

a currently manual knowledge engineering process that needs to be automated. For

example, the development of the Service Request Portal (SRP) started with the need to

automate the process of extracting problem-solution pairs. The purpose of the External

layer is to model the currently manual work process in order to explicitly identify the

activities that will benefit from automation.

The External layer makes use of three models from CommonKADS methodology

[Schreiber, 1994] in order to address the integration of the KESP with the currently

manual work process (requirement R1a) and its use by the knowledge engineers (re-

quirements R2a, R2b). The Organization model is used to align the KESP the orga-

nizational problem that needs to be solved in order to satisfy requirement R2b. The

Agent and Task models are used to capture the end-users’ work process in order to

ensure that the KESP is integrated into the end-users’ work process (requirement R1a)

and improves productivity (requirement R2a).

The External layer process for applying the Organization and Agent/Task models is

as follows:

1. Interview stakeholders (typically this includes end-users and their managers) about

the high-level user and organization need(s) for the KESP. Important information

to collect includes current work processes, the people and resources involved in

these work processes, and success metrics for the KESP. These inputs to the Ex-

ternal layer are indicated by connection (1) in Figure 6.1.

2. Organize the collected information using a CommonKADS Organization model
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[Schreiber, 1994] and determine the focus area for the KESP. Figure 6.2 shows the

Organization model for the SRP. The process for creating the Organization model

is as follows: a) Extract the key organizational components—context, people, pro-

cesses, resources—from the information collected in Step 1; b) Identify problems

in the current processes; c) Select one high-value problem to be the focus area for

the KESP.

3. Interview the end-users about their work process and record the results as a

step-by-step process. Techniques for work process interviewing are discussed in

[Schreiber, 1994].

4. Construct an Agent/Task model [Schreiber, 1994] for the current work process.

The Agent/Task model for the Service Request Portal is shown in Figure 6.3. The

process for creating the Agent/Task model is as follows: a) Create an agent for

each person or resource involved in the current work process; b) Create a task for

each step in the work process captured in Step 3; c) Relate agents to the tasks

that they perform. Label tasks performed by a single actor as << includes >>

and tasks performed by multiple actors as << uses >>.

5. Use the Agent/Task model at the Outside-In layer to identify problems in the

currently manual work process. This output from the External layer is indicated

by connection (2) in the IRPM process shown in Figure 6.1.

The External layer for the Service Request Portal development process consisted of

the Organization model shown in Figure 6.2 and Agent/Task model shown in Figure

6.3. The Organization model ensured that the SRP significantly accelerated the pro-

cess of extracting problem-solution pairs (requirement R2b) by identifying the following

important problem in the networking company: “locating relevant service requests and

extracting problem-solution pairs”. The Organization model also identified the search

engine and service request viewer that were used in the SRP design concept in order
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Figure 6.2: CommonKADS Organization Model for the computer networking company
where the Service Request Portal was developed

to minimize cost and development time. The Agent/Task model provided an easy to

understand representation of the currently manual NKE work process which in-turn

guided the process of eliciting the user needs at the Outside-In layer. This coupling of

the existing work process and user needs ensured that the SRP was correctly integrated

into the NKEs’ work process (requirement R1a) and made significant productivity im-

provements (requirement R2a).

Figure 6.2 shows the relationship between the six key components—Organizational

Context, People, Processes, Resources, Problems, and Focus Area—for the computer

networking company where the SRP was developed. This model was used to determine

that “locating relevant service requests and extracting problem-solution pairs” would

be the focus area for the SRP. It also identified the existing resources (the search engine

and service request viewer) that were used in the NKE work process.

Figure 6.3 shows the Agent/Task model corresponding to the NKE work process

for “locating relevant service requests and extracting problem-solution pairs”. This
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Figure 6.3: CommonKADS Agent/Task model of the Network Knowledge Engineers’
work process for extracting problem-solution pairs

Agent/Task model facilitated the identification of the user needs for the Service Re-

quest Portal at the Outside-In layer and enabled the SRP development team to clearly

visualize the relationships between the tasks in the NKE work process.

6.5.2 Outside-In Layer: User Needs and System Requirements

Once we have modeled the knowledge engineering work processes, we next need to

understand the needs of the knowledge engineers who will be using the Knowledge

Engineering Software Product (KESP). The purpose of the Outside-In layer is to identify

user needs and correlate them to measurable development goals for the KESP. These

user needs and goals are used at the Internal layer to help guide the conceptual design

process and at the Outer layer to ensure that the KESP meets end-users’ needs.

The Outside-In layer ensures a high-quality KESP with respect to the user needs

(requirements R1a and R1b). To this end, the Outside-In layer combines techniques

from the product design and software engineering domains. First, the House of Quality
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method [Hauser and Clausing, 1988], from the product design domain, is used to cor-

relate the user needs with technical metrics (benchmarks) that can be used to develop

the KESP. Next, the UML Use Case diagram [Schach, 2008], from software engineering

domain, is used to specify the work flow for how the end-users will interact with the

KESP.

The Outside-In layer process for applying the House of Quality and UML Use Case

diagram methods is as follows:

1. Review the Agent/Task model from the External layer with the end-users and

identify tasks that are currently difficult, problematic, and time-consuming. This

input to the Outside-In layer is indicated by connection (2) in Figure 6.1.

2. Correlate the user needs and technical metrics for the KESP using the House

of Quality method [Hauser and Clausing, 1988]. Figure 6.4 shows the House

of Quality for the Service Request Portal. The process for creating the House of

Quality is as follows: a) Work with end-users to define the functional requirements

for the KESP; b) Interview end-users to identify the usability requirements, e.g.

easy to use, for the KESP; c) Work with users to assign a relative priority or

importance to each functional and usability requirement using a convenient scale

e.g. 1-10; d) Derive a set of technical metrics for quantitatively measuring the

satisfaction of the user needs based on the tasks in the current work process; e)

Characterize the relationships between the user needs and technical metrics using

a convenient scale (e.g. strong relationships, medium relationship, weak relation-

ships, or no correlation); f) Characterize the correlation between the technical

metrics using a convenient scale (e.g. positive, negative, or no correlation).

3. Translate each secondary functional user need—and all primary functional needs

which do not decompose into secondary needs—in the House of Quality into a

goal that the users are trying to accomplish using the KESP. Review the goals
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with the end-users to ensure that they correctly reflect the intent of the original

user need.

4. For each user goal create a UML Use Case diagram [Schach, 2008] to capture

the desired the user-product interactions related to achieving the goal. Figure 6.5

shows one of the Use Case diagrams for the Service Request Portal. The process

for creating the Use Case diagram for a single user goal is as follows: a) Represent

each agent in the Agent/Task model involved in achieving the goal as an actor; b)

Work with end-users to add the desired set of interactions for accomplishing the

goal; c) Label each set of related interactions as either a dependency (indicated by

<< includes >> in UML notation) where one interaction includes the other or a

variation (<< extends >>) where one interaction is a special case of the other.

5. Review the Use Case diagrams with the end-users and, if necessary, make adjust-

ments to the House of Quality.

6. Use the functional requirements from the House of Quality to specify the primary

(overall) function of the KESP at the Internal layer. Use the interactions from the

Use Case diagrams to define the inputs and outputs to the primary function. These

outputs are indicated by connections (3) and (4) in the IRPM process (Figure 6.1).

Use the functional and usability requirements to specify the evaluation criteria for

the Utility Function at the Internal layer. These outputs from the Outside-In

layer are indicated by connection (5) in Figure 6.1.

The Outside-In layer for the Service Request Portal consisted of the House of Quality

diagram shown in Figure 6.4 and six Use Case diagram, one of which is shown in Figure

6.5. The House of Quality identified the NKEs’ needs and was critical in ensuring the

SRP was high-quality respect to the user needs (requirement R1b). At the Internal layer

the House of Quality provided well-defined user requirements to guide the conceptual

design process. The House of Quality also provided the technical metrics that served as
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evaluation criteria for guiding the implementation of the KESP at the Outer layer. The

Use Case diagrams allowed the NKEs to work with the development team in order to

ensure that the SRP was integrated into the existing work process (requirement R1a)

and easy to use (requirement R1b).

Figure 6.4 shows the functional requirements, usability requirements and correspond-

ing technical metrics for the Service Request Portal. The functional requirements were

derived from the following two problems in the current work process. First, the rele-

vance of a service request depended information—e.g. attachments and tags—that was

not included in the existing search engine’s keyword search functionality. Consequently,

the task “keyword query” resulted in a large number of irrelevant results that needed

to be manually evaluated for relevance. Second, each service request contained 30-50

pages of complex unstructured highly technical documentation. As a result, the NKEs

spent a significant amount of time and effort reading through irrelevant email threads,

poorly formatted text, and duplicated content when they performed the tasks: “read

SR resolution summary”, “read SR case notes”, and “read SR attachments”. These two

problems were translated into the two primary functional requirements: “locate rele-

vant service requests” and “extract problem-solution pairs”. Each primary functional

requirement was decomposed into a set secondary functional requirements based on the

individual tasks in the NKE work process. For example, in order to locate relevant ser-

vice requests the NKEs manually examined the fields (technology, sub-technology) of

each service request as part of the task “check SR fields”. The NKEs wanted to be able

to specify these field values as part of the search criteria so that they did not have to

manually filter search results. This user need was captured in the secondary functional

requirements “be able to do targeted searches”.

The two usability requirements—“easy to use” and “high-performance”—came from

interviews with the NKEs. The technical metrics were based on the tasks in currently

manual NKE work process and the functional requirement. For example, the “number
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Figure 6.4: House of Quality of the user needs and corresponding technical metrics for
the Service Request Portal
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of pages read to assess relevance” and “average time to assess relevance” were used to

measure the functional requirement “be able to read service requests easier”.

The correlation of the functional requirements, usability requirements, and technical

metrics was based on discussions with the NKEs. For example, the functional require-

ment “be able to read service requests easier” was strongly related to the technical

metric “number of pages read to assess relevance” because the NKEs found that shorter

service requests were easier to read through. Likewise, the technical metric “number of

pages read to assess relevance” was positively correlated to the technical metric “average

time to assess relevance” because decreasing the number of pages that the NKEs had

to read also decreased the average time to assess the relevance of a service request.

Figure 6.5 shows the use case corresponding to the functional requirement “be able

to quickly assess relevance of service requests”. This use case specified the desired

interaction with the SRP when assessing the relevance of a service request. The direct

result of this use case was the right pane of the user interface shown in Figure 6.11 which

allowed the NKEs to quickly switch between the “summary”, “tidy”, and “original”

views of the currently opened service request.

6.5.3 Internal Layer: Conceptual Design

The External and Outside-In layers provide the user and organizational needs that the

Knowledge Engineering Software Product (KESP) will need to address. The Internal

layer provides the design concept that specifies how the KESP will satisfy those needs.

The resulting design concept is then translated into the software design for the KESP

at the Inside-Out layer of representation.

The Internal layer makes use of three well-known product design techniques to ad-

dress the three requirements for high-value (R1, R2, R3 ). First, the Function Structure

method [Pahl and Beitz, 1996] is used to create a solution-neutral functional specifi-
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Figure 6.5: Use Case diagram for the goal “assess relevance of a service request”

cation of the KESP. Next, the Morphological Matrix method [Pahl and Beitz, 1996]

provides a systematic approach to exploring the design space and generating alterna-

tive KESP design concepts. Lastly, the Utility Function method [Pahl and Beitz, 1996]

is used to assess the design concepts so that a single high-value concept can be selected

for further development.

The Internal layer process for applying the Function Structure, Morphological Ma-

trix, and Utility Function methods within the context of KESP development is as follows:

1. Determine the main function of the KESP from the functional requirements in

the House of Quality. Examine the user-product interactions in the Use Case

diagrams and determine the inputs and outputs to this main function. These two

inputs to the Internal layer are indicated by connections (3) and (4) in Figure 6.1.

2. Create a Function Structure [Pahl and Beitz, 1996] for the KESP by hierarchically

decomposing the primary function into lower complexity (simpler) sub-functions.

Figure 6.6 shows the Function Structure for the Service Request Portal. The
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process for creating the Function Structure is as follows: a) Decompose the main

function (from Step 1) into a set of primary sub-functions corresponding to the

primary functional requirements in the House of Quality; b) Decompose each of the

primary sub-functions into a set of secondary sub-functions roughly corresponding

to the secondary functional requirements in the House of Quality; c) Continue the

decomposition process until each sub-function is atomic and only operates on a

single input/output. The Agent/Task model of the user work process can be

helpful in defining the lower level sub-functions past the level of detail in the

House of Quality; d) Review the finished Function Structure with the end-users

and verify that it accurately captures the requirements specified in the House of

Quality and Use Case diagrams.

3. Create a Morphological Matrix [Pahl and Beitz, 1996] using the Function Structure

from Step 2 and generate several alternative design concepts for the KESP. Figure

6.7 shows the Morphological Matrix that was used to generate the design concept

for the Service Request Portal. The process for creating the Morphological Matrix

is as follows: a) Identify several (2-5) solution-principles or function realizations

for each terminal (bottom-level) sub-function in the Function Structure; b) Ar-

range the sub-functions and solution principles as a matrix, with sub-functions

in the matrix rows and solution-principles in the matrix columns; c) Combine

suitable combinations of solution principles to generate several (2-3) alternative

design concepts for the KESP. Strategies for identifying solution-principles and

generating design concepts are discussed in [Pahl and Beitz, 1996], [Ulrich and

Eppinger, 1995], and [Otto and Wood, 2000].

4. Construct a Utility Function [Pahl and Beitz, 1996] to assess the design concepts

for the KESP and select a single high-value concept for further development.

Figure 6.8 shows the Utility Function that was used to select the design concept for

the Service Request Portal. The process for applying the Utility Function method
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is as follows: a) Define a set of evaluation criteria for the KESP. In general these

evaluation criteria will come from two sources: the user (functional and usability

requirements) and organization (requirements such as low cost); b) Assign each

evaluation criteria a weight (between 0-1) according to its importance—the weights

of all the evaluation criteria must sum to 1. The objectives tree method [Pahl and

Beitz, 1996] is a useful tool for assigning weights to the evaluation criteria; c) Score

each design concept according to how well it satisfies each evaluation criteria using

a convenient scale, e.g. 1-10; d) Calculate the overall utility Ui for each design

concept i using Equation 6.1

Ui =

j=1∑
n

wj ∗ sij

,

where wj denotes the weight of the j − th evaluation criteria and sij denotes the

score of design concept i with respect to the j − th evaluation criteria.

5. Use the sub-functions from Function Structure to create the UML Component

diagram for the KESP software architecture. Use the solution principles from the

selected design concept to create the UML Class diagrams for the detailed software

design. These outputs from the Internal layer are indicated by connections (6)

and (7) in Figure 6.1.

The application of the Internal layer process to the development of the Service

Request Portal resulted in the Function diagram shown in Figure 6.6, the Morpholog-

ical Matrix shown in Figure 6.7, and the Utility Function shown in Figure 6.8. The

Function Structure connects the NKEs’ functional requirements to the SRP functional

specification in order to ensure that the SRP satisfied requirements R1a and R1b. The

Morphological Matrix and Utility Function enabled a wide range of possible designs for

SRP to be explored and, therefore, maximized the probability that the SRP would be
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Figure 6.6: Function Structure for the Service Request Portal

high-quality (requirements R2a and R2b) and low cost (requirement R3 ).

Figure 6.6 shows the Function Structure of the key SRP functions and sub-functions.

The Function Structure consisted of four levels, each representing an increasing detailed

functional specification for the SRP. The first three levels followed directly from the

primary and secondary functional requirements in the House of Quality (shown in Figure

6.4). The fourth level of the Function Structure decomposed the secondary functional

requirements into the detailed product sub-functions which enabled the exploration of

solution principles using the Morphological Matrix shown in Figure 6.7.

Figure 6.7 shows the Morphological Matrix that was used to generate three design

concepts for the SRP. Design concept 1 was a high complexity design that used infor-

mation retrieval methods such as “cosine similarity” and “natural language process”

as solution principles. Design concept 2 was a low complexity design that used easy

to implement solution-principles such as regular expressions. Design concept 3 (shown

in Figure 6.7) used a “hybrid” approach that combined the existing search engine and

service request viewer with the relatively simple solution principles from design concept

2.

Figure 6.8 compares the utility of the three design concepts with respect to the

quality and cost evaluation criteria for the SRP. Examination of the Utility Function
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Figure 6.7: Morphological Matrix and the selected design concept for the Service Re-
quest Portal

shows that Design Concept 3 yielded the highest utility (5.9) of the three concepts. The

high utility score of design concept 3 was largely due to use of the existing search engine

and service request viewer which provided the desired functionality at low cost. Design

concept 1 scored highly with respect to the “quality” evaluation criteria but low on the

“cost” criteria. Design concept 2 scored low with respect to the “quality” evaluation

criteria but high on the “cost evaluation criteria.

6.5.4 Inside-Out Layer: Software Design of the Product

The Inside-Out layer translates the design concept and associated solution-principles

from the Internal layer into the necessary software engineering artifacts for implement-

ing the Knowledge Engineering Software Product (KESP) at the Outer layer.

The Inside-Out layer provides the link between the product design and software

engineering methods that ensures that value created at the Internal layer is accurately

transferred to the final product. To this end, the Inside-Out layer draws upon two

tools from the Unified Modeling Language [Schach, 2008]. First, the UML Component

diagram is used to translate the Function Structure into the software architecture and

the overall structure for the KESP software implementation. Next, the UML Class
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Figure 6.8: Utility Function used to select a high-value design concept for the Service
Request Portal
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Diagram is used to create the detailed design for implementing the solution-principles

of the design concept.

The Inside-Out layer process for applying the Component and Class diagrams within

the context of KESP development is as follows:

1. Group the terminal (bottom-level) sub-functions in the Function Structure so that

each group is as self-contained as possible with minimal coupling to other groups.

The number of groups will depend on the size and complexity of the design concept

but will typically range from five to ten groups. This Internal layer input to the

Inside-Out layer is indicated by connection (5) in Figure 6.1.

2. Create UML Component diagram [Schach, 2008] to define the software archi-

tecture of the KESP. The Component diagram for the Service Request Portal is

shown in Figure 6.9. The process for creating this diagram is as follows: a) Create

a software component for each sub-function group from Step 1. Label components

that involve user interactions as UI components and components that only inter-

act with other components as functional components; b) Add an actor for each

distinct actor in the Use Case diagrams; c) Add the interactions between the ac-

tors and UI components based on the sub-function information flows in Function

Structure and the Use Case diagrams. Add the interactions between UI compo-

nents and functional components based on the sub-function information flows in

the Function Structure.

3. Use a UML Class diagram [Schach, 2008] to decompose each component into

a set of software classes. Figure 6.10 shows the Class diagram corresponding to

the ContentFilter component from the Component diagram shown in Figure 6.9.

The process for creating the Class diagram is as follows: a) Add an entity (data

structure) class for each distinct input and output to the component; b) Add one

or more functional classes to transform the input data structures into the output

169



www.manaraa.com

data structures based on the solution-principles from the design concept; c) Add

one or more control classes for handling the overall logic of the Component, e.g.

receiving input data structures, triggering functional classes, and sending output

data structures; d) Specify the relationships (inheritance, aggregation, association)

between the entity, functional, and control classes.

4. Use the Component and Class diagrams at the Outer layer to develop the KESP.

These two outputs from the Inside-Out layer are indicated by connections (8) and

(9) in Figure 6.1.

The application of the Inside-Out layer process to the development of the Service

Request Portal (SRP) resulted in the UML Component diagram shown in Figure 6.9

and six UML Class diagrams, one of which is shown in Figure 6.10. The Component

and Class diagrams ensured that the value in the selected design concept was carried

into the software design of the SRP. The Component diagram defined the two software

components that the SRP would need to have in order to interface with the search

engine and service request viewer. The Class diagrams provided the design for the

data structures, functions, and control logic necessary to implement these two software

components.

Figure 6.9 shows the six components in the software architectures of the Service

Request Portal. The architecture consisted of three layers: user interface, search

and content filtering, and back-end interface. The user interface layer contained the

SearchUserInterface and ContentUserInterface components that handled the user in-

teractions related to the “locate relevant service requests” and “extract solutions from

relevant service requests” sub-functions. The SearchFilter and ContentFilter compo-

nents handled the “locate candidate service requests” and “filter service request content”

sub-functions. The back-end interface layer contained the SearchEngineInterface and

ServiceRequestViewerInterface components that communicated with the existing search

170



www.manaraa.com

Figure 6.9: UML Component diagram showing the Service Request Portal software
architecture

engine and service request viewer and handled the “locate candidate service requests”

and “retrieve service request” sub-functions.

Figure 6.10 shows the Class diagram corresponding to the ContentFilter component.

The ContentFilter component takes a set of search results as input and returns a set

of filtered service requests as output. The transformation of search results into filtered

service requests involved six classes. Representing the information flow for this compo-

nent required two data structures: the SearchResult class to represent the search results

and ServiceRequest class to represent the service requests. The hash-based deduplica-

tion solution-principle for transforming the search results into filtered service requests

required two functional classes: the DeduplicationFilter class for removing duplicated

content and SummarizationFilter for summarizing service requests. Lastly, the Con-

tentFilter and Filter classes specified the control logic for managing the retrieval and

filtering of the service requests.
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Figure 6.10: UML Class diagram showing the data structure, functional, and control
logic classes for the Service Request Portal ContentFilter component

6.5.5 Outer Layer: Developing the Knowledge Engineering Software Prod-

uct

The Outer layer addresses the planning, software development, and testing involved in

transforming the software design from the Inside-Out layer into the finished Knowledge

Engineering Software Product (KESP).

The Outer layer plays a critical role in ensuring the KESP satisfies all three require-

ments for high-value. For this reason, the Outer layer is based on an Iterative and

Incremental Development (IID) [McConnell, 1996] life-cycle model that incorporates

user feedback and testing through the use of short build and test cycles (iterations).

Rapid build and test cycles with user feedback ensure that KESP is high-quality with

respect to the user needs (requirements R1a and R1b) and minimize development time

(requirement R3 ).

The Outer layer process for using Iterative and Incremental Development to develop

the KESP is as follows:

1. Translate the Component diagram from the Outside-In layer into a series of soft-
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ware development tasks for the KESP. Simple components will correspond to a

single task, while more complex components will need to be broken up into several

tasks. This input to the Outer layer is indicated by connection (7) in Figure 6.1.

2. Create a software development plan [Schach, 2008] for implementing the KESP.

The software development plan is created as follows: a) Organize the development

tasks from Step 1 into a series functional (user testable) prototypes; b) Determine

the relationship between the prototypes and the user needs specified in the House

of Quality; c) Use the House of Quality to prioritize the prototypes so that the

functionality related to the important user needs is addressed first.

3. Prototype the KESP using Iterative and Incremental Development (IID)

[McConnell, 1996]. The process for applying IID is as follows: a) Use the Com-

ponent diagram to develop the interfaces between components; b) Use the Class

diagrams to develop the classes. These inputs to the prototyping process are

indicated by connections (8) and (9) in Figure 6.1.

4. Test the prototype with users and elicit feedback. The process for testing the

prototype is as follows: a) Have the users actively use the prototype in their

work process (captured in the Agent/Task model); b) Elicit feedback for each

user need using a convenient scale (e.g. exceeds need, meets need, does not meet

need). Record measurements for each technical metric in the House of Quality;

c) Review the user feedback and technical metrics for the current prototype. If

the user feedback and technical metrics are satisfactory (based on the House of

Quality) then the prototype is finished, and development proceeds to the next

increment in the software development plan. Perform another iteration if the

prototype is significantly below user expectations or the targets for the technical

metrics.

5. Deploy the KESP to the end-users. This output from the Outer layer is indicated

by connection (9) in Figure 6.1) and represents satisfaction of the goal state of
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Prototype Components Development Tasks
Alpha SearchUserInterface

SearchFilter
SearchEngineInterface

SearchUserInterface
SearchFilter
SearchEngineInterface

Beta Content UI
ContentFilter
SearchEngineInterface

ContentUserInterface
ContentFilter

Release
Candi-
date

Search UI
SearchFilter Con-
tentUserInterface
ContentFilter
SearchEngineInterface

Integration

Table 6.3: software development plan for implementing the Service Request Portal

the IRPM.

The Outer layer of the Service Request Portal involved three increments (proto-

types) shown in Figure 6.3: alpha, beta, and release candidate. The alpha prototype

implemented the search filter functionality (Search UI, Search Filter, and Search En-

gine Interface). The beta prototype implemented content filter functionality (Content

UI, Content Filter, and Search Engine Interface). The release candidate prototype,

integrated the search filter and content filter into a complete KESP. The Incremental

and Iterative Development process implemented the value generated at the External,

Outside-In, and Internal layers. The Outer layer produces the final SRP software prod-

uct described at the beginning of Section 6.5. The evaluation of the SRP with respect

to the organization needs, NKE needs, and value requirements is described in Section

6.7.

6.6 Software Environment

The Service Request Portal (SRP) provides search and content filtering to automate the

manual information retrieval activities in the Network Knowledge Engineers’ (NKEs)

work process for extracting problem-solution pairs from service requests. The NKEs

interact with the SRP using the web-based graphical user interface (GUI) shown in
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Figure 6.11. The NKEs first enters a set of search keywords in the text box in the

top pane of the GUI. The search results are then displayed in the middle pane of the

GUI. Next, the NKEs refine the search results by adding additional search criteria (e.g.

“device hardware type”) that act as constraints on the results. Once irrelevant search

results are removed, the NKEs can open the relevant service requests by clicking on the

search result. The corresponding service request is displayed in the right pane of the

GUI. The NKEs are then able to select from three different service request “views”,

each providing a different level of information. The first view is a high-level summary

that captures the essential information from the service request—problem experienced

by the customer, the first and last correspondence between the customer and technical

support engineer, and the resolution summary of the steps taken to solve the problem.

The second view is a complete but deduplicated and reformatted version of the service

request that is color coded in order to simplify reading. The third view is the unedited

service request taken directly from the service request viewer.

The SRP software architecture, shown in Figure 6.12, consists of four major blocks:

the SRP application, the existing search engine that was used by the NKEs to locate

service requests, the existing service request viewer used by the NKEs to read service

requests, and the relational database where the service requests are stored. The SRP

application combines the GUI shown in Figure 6.11 with search and content filtering

functionality layered on top of the existing search engine and service request viewer.

The search filtering functionality uses the results from the search engine and applies

additional criteria, provided by the NKEs, to filter out irrelevant results. The content

filtering functionality uses the service request viewer to retrieve the service request and

applies a set of filters to remove duplicated information and provide a concise summary

of the service request.

The SRP tool provided two key features to support the SCH engineers work process:

domain specific search features that made it easier that made it easier to locate relevant
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Figure 6.11: Graphical user interface for the Service Request Portal

Figure 6.12: Software architecture for the Service Request Portal
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service and automatic summarization of long and complicated service requests. The

SRP was implemented as a client server architecture consisting of three pieces: a Ruby

backend that handled the retrieval and summarization of service requests, a MySQL

database for storing service requests, and a HTML/Javascript web interface that the

SCH engineers connected to using a web browser.

6.7 Results: Knowledge Engineering Software Product for

In this section we present key results from our evaluation the Service Request Portal

(SRP) with respect to the three requirements for high-value that were developed in

Section 6.2.

6.7.1 User Needs

The first requirement for high-value is that the Knowledge Engineering Software Product

(KESP) must be high-quality with respect to the user needs. This requirement has two

parts: R1a and R1b. Requirement R1a addresses the need for integration with the

knowledge engineers’ existing work process, while requirement R1b addresses the user

experience with the KESP.

In order to determine how well the SRP satisfied requirements R1a and R1b we

collected user feedback for the functional and usability requirements in the House of

Quality during each build and test cycle. The Network Knowledge Engineers (NKEs)

provided feedback on the following three point scale: “Does not meet need”, “Met need”,

or “Exceeded need”.

Table 6.4 shows the results from testing the SRP with the NKEs. The NKEs wanted

a software product to automate the tedious and manual aspects of their work process

related to the “Breadth”, “Depth”, “Summary”, and “Repetition” problems. The SRP
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User Need Evaluation Feedback
“Be able to do
broad searches”

Exceeded
need

“The Service Re-
quest Portal helps
us find information
easily compared to
the current search
engine”

“Be able to do
very targeted
searches”

Met need

“Be able to read
service requests
easier”

Exceeded
need

“Be able to
quickly ex-
tract problem-
solution pairs”

Met need “The Service Re-
quest Portal is
useful to extract
the information
quickly”

“Seamless ac-
cess to service
request attach-
ments”

Met need

“Easy to use” Exceeded
need

“The Service Re-
quest Portal looks
just amazing. Our
team is excited to
use it for rule writ-
ing.”

“High perfor-
mance”

Exceeded
need

Table 6.4: User evaluation of the service request portal

addressed the “Breadth”, “Depth” problems by allowing the NKEs to specify granular

search filters when searching for service requests. The SRP addressed the “Summary”,

and “Repetition” problems by providing the NKEs with a high-level summary for each

service request and a deduplication filter that removed the most of the irrelevant content

in long and complicated service requests. Since the SRP met or exceeded the functional

and usability requirements shown in Table 6.4, we conclude that the SRP satisfied

requirements R1a and R1b for a high-value KESP.
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6.7.2 Productivity Improvement

The second requirement for a high-value Knowledge Engineering Software Product

(KESP) is that the KESP must improve the knowledge engineering processes. This

requirement has two parts: R2a and R2b. Requirement R2a addresses the difference

the SRP made with respect to the NKEs’ work process, while requirement R2b addresses

the impact of the SRP with respect to the overall organizational goal to develop smart

networking products and services. We will focus on evaluating the SRP with respect to

requirement R2a because it can be measured directly through user testing.

In order to determine how well the Service Request Portal satisfied R2a we evaluated

the productivity impact of the SRP on several key aspects of the Network Knowledge

Engineers’ (NKEs) work process. The NKEs were split into two groups and each group

was given the task of creating problem-solution pairs for nine product problems that

ranged from a relatively simple voltage alarm (R3) to complex hardware interface prob-

lem (R1). The first group used the SRP to locate relevant service requests and extract

problem-solution pairs. The second group used the existing search engine and service

request viewer. The productivity of each group was benchmarked using the following

three technical metrics from the House of Quality in Figure 6.4.

1. TM1: “average number of pages read to assess relevance of a service request”

2. TM2: “average time spent assessing relevance of a service request”

3. TM3: “average time to extract the problem-solution pairs from the relevant ser-

vice requests”

The SRP reduced the “average number of page read to assess relevance of a service

request” (TIM1) from 22 pages to 3 pages (Figure 6.13). The NKEs attributed the

decrease in number of pages read to the service request summary. By reducing the
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Figure 6.13: Technical Metric 1: Average number of pages read to assess relevance of a
service request

Figure 6.14: Technical Metric 2: Average number of pages read to assess relevance of a
service request

number of pages the NKEs had to read the SRP also reduced the “average time spent

assessing relevance of a service request” (TIM2) by 60% (see Figure 6.14).

Once the NKE’s identified a relevant set of service requests, the next step involved

extracting the problem-solution pairs from the relevant service requests. Figure 6.15

shows that the SRP reduced the “average time to extract the problem-solution pairs

from the relevant service requests” (TIM3) by over 30%. The time savings were largely

from the content filter that removed duplicate information from the service requests and

user interface features such as keyword highlighting.

The networking company’s problem statement was to improve the productivity of

the NKEs and decrease the cost of developing problem-solution pairs. The results for
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Figure 6.15: Technical Metric 3: Average time to extract problem-solution pair from a
service request

technical metrics TM1, TM2, and TM3 demonstrate that the SRP made a significant

improvement to NKEs’ productivity and, therefore, satisfies requirement R2a. We were

not able to directly evaluate the impact of the SRP on the cost of extracting problem-

solution pairs (requirement R2b), however, the results for requirement R2a suggest that

the SRP will also significantly decrease the costs involved.

6.7.3 Cost Effectiveness

The third and final requirement for high-value is that “the Knowledge Engineering

Software Product must be developed rapidly and at low cost” (requirement R3 ). In

order to evaluate the SRP with respect to this requirement we compared the projected

time-savings of the NKEs using the SRP (based on the results for requirements R2a

and R2b) to the SRP development costs (time) and assessed how long the SRP will take

to produce a positive return on investment (ROI).

The design and development of the SRP involved approximately 1000 hours of work

carried out by two software engineers over a six-month period. The resulting product,

the SRP, was used by a team of 10 Network Knowledge Engineers (NKEs) as the primary

tool for supporting their daily work process. On a typical day the NKEs read 10 service

requests for relevance and extracted problem-solution pairs from two of the relevant
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service requests. Based on the increased productivity described in the previous section

(15 minute when assessing relevance and 30 minutes when extracting problem-solution

pairs), we estimate that the daily productivity of the NKEs would increase by 3.5 hours

when using the SRP. For the team of 10 NKEs, the productivity impact of using the SRP

will be on the order of 35 hours every day. Assuming that one hour of the development

engineers’ time is equal in value to one hour of the NKEs’ time, the SRP will produce

a positive return on investment (ROI) after one and a half months (43 days) after it is

deployed to the NKEs.

In order to achieve the networking company’s overall objective, decrease the cost of

involved with extracting problem-solution pairs, the SRP also had to be cost-effective.

The SRP relatively low development cost (43 days until a positive ROI) satisfies re-

quirement R3 for high-value.

6.7.4 Simplifications

The Integrated Representation Based Process Methodology (IRPM) is a comprehensive

methodology for developing high-value Knowledge Engineering Software Products (KE-

SPs). We recommend that the complete IRPM be used whenever possible, however,

there are conditions where it is necessary to simplify the IRPM in order to increase the

overall value of the KESP. This section describes the potential simplifications to the

IRPM and provides the guidelines for how these simplifications should be implemented.

The Service Request Portal (SRP) from Section 6.5 is used as an illustrative example

for applying the simplifications.

There are three different conditions for simplifying the IRPM. First, a time constraint

might limit the amount of time that can be spent for each layer of the IRPM. Second, a

resource constraint might limit the number of people, money, and/or computer hardware

available for developing the KESP. Third, the problem under consideration might be of
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low complexity and not significantly benefit from some of the formal tools in the IRPM.

Table 6.5 shows the recommended simplifications to the External, Outside-In, Internal,

and Outer layers of IRPM.

The process for applying the simplifications listed in Table 6.5 is as follows:

1. Identify the constraints for the KESP development process. Typically there will be

three different types of constraints: time constraints, human resource constraints,

and financial constraints.

2. Determine the key characteristics of the problem under consideration. Important

characteristics to consider include: size of the organization, number of end-users

for the KESP, complexity of end-user’s work process, and importance of the prob-

lem to the organization.

3. Select the appropriate set of simplifications from Table 6.5 based on the results

from Step 2 and apply them when using the IRPM to develop the KESP.

Note that Table 6.5 does not recommend simplifying the Inside-Out layer of the

IRPM (software design). This layer is critical in successfully implementing the design

concept from the Internal layer at the Outer layer and its simplification could result in

the KESP not meeting the three requirements for high-value.

The development of the SRP, described in Section 6.5, had both time and re-

source constraints—the product had to be developed in six months by two software

engineers—that required the simplification of the External, Outside-In, and Internal

layers of the IRPM. At the External layer we interviewed stakeholders—end-users and

their managers—in order to capture the organizational context and end-user work pro-

cesses for the KESP but did not create the CommonKADS Organization or Agent/Task

models. At the Outside-In layer we defined the user needs and technical metrics for

evaluating the KESP but did not formally correlate them in a House of Quality. At
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Layer Method Conditions for Sim-
plification

Simplifications Estimated
Time
Savings

Impact (Conse-
quences)

External
Organizational
Model

The KESP is
being developed
within a smaller
organization
and/or the Knowl-
edge Engineering
problem under
consideration is
straightforward

List the people and
processes without con-
structing the Organiza-
tion model diagram

Medium to
High

Lower probability
of the KESP devel-
opment being fo-
cused on the right
problem.

Agent/Task
Model

List tasks with-
out creating the
Agent/Task dia-
gram

The end-users’ current
work-process is rela-
tively simple

Medium to
High

Might miss impor-
tant relationships
between tasks

Outside-In
House of
Quality

There are a small
number of user
needs and/or the
relationship be-
tween the user
needs and tech-
nical metrics is
straightforward

List the user needs and
technical metrics with-
out creating the rela-
tionship and correla-
tion matrices

Low to
Medium

More difficult to
make trade-offs
during the devel-
opment process.

Use Case Di-
agrams

The end-user work
process is relatively
simple

List the steps in the
Use Case but do not
create a UML diagram

Low -
Medium

More difficult to in-
tegrate the KESP
into the end-user
work process

Internal
Function
Structure

Relatively simple
functional user
needs and use
cases

Reduce depth of the
Function Structure and
omit information flows

Low -
Medium

More difficult to
come up with
solution-principles
when creating
the Morphological
Matrix

Morphological
Matrix

Sub-functions are
relatively simple
and straightfor-
ward to implement

Reduce the number of
solution-principles ex-
plored for each sub-
function

Low to
Medium

Lower probability
of generating the
best design with re-
spect to the user
and organizational
needs

Utility Func-
tion

Small number of
evaluation criteria
(5-10)

Do an informal com-
parison of the of the de-
sign concepts using the
evaluation criteria

Low to
Medium

Reduced objectiv-
ity during design
selection

Outside-In
Component
Diagram

Simplification is
not recommended

Class Dia-
grams

Simplification is
not recommended

Outer
Software
Development
Plan

Simplification is
not recommended

Iterative and
Incremental
Development

Quality (robust-
ness, ease of use,
etc.) is not critical

Reduce the number of
iterations

Medium to
High

Less user feedback

Table 6.5: Possible simplifications for each layer of the process methodology for knowl-
edge engineering software product development
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the Internal layer we developed the functional specification for the SRP and explored

multiple design concepts but did not use the formal methods (Function Structure, Mor-

phological Matrix, and Utility Function). The Inside-Out and Outer layer processes

were not simplified. Without these simplifications the development of SRP would have

required significantly more resources to develop.

It is important to note that a number of the SRP examples for the methods in Section

6.5—in particular the Organization model, Agent/Task model, House of Quality, Func-

tion Structure, Morphological Matrix, and Utility Function—were not created during

the development of the SRP. These examples were created after the SRP had already

been developed in order to illustrate the application of the IRPM within the context of

a real knowledge engineering problem.

6.8 Conclusions

Rapid and cost effective knowledge engineering requires the automation through the

creation of Knowledge Engineering Software Products (KESPs). However, the deploy-

ment of KESPs often does not yield useful results, in particular because insufficient

attention is spent addressing the needs of users that will be using the system. In this

application we have used the Integrated Meta-Representation Model to combine meth-

ods and techniques from the domains of Knowledge Engineering, Engineering Design,

and Software Engineering into a unified process methodology for developing KESPs.

Our novel contribution is the use of methods and techniques from Engineering Design

in order to resolve the typical trade-off conflicts that arise during design, development,

and deployment and ensure that the developed product sufficiently addresses the users

needs and is high-value (quality and cost). We have demonstrated the effectiveness

of the process methodology within the context of a simple but non-trivial KESP for

supporting the development of smart services in the computer-networking domain.
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7 Conclusion and Future Research

In this concluding chapter we first summarize the research presented in the thesis. We

then discuss the contributions from the research. Lastly, we lay out future research

directions that addresses the generalization of the research contributions.

7.1 Summary of the Thesis

There are an increasing number of organizations attempting to apply knowledge en-

gineering to support the transformation of massive amounts of data and information

into useful knowledge that can be used to influence core business activities, e.g. prod-

uct development, customer support, and marketing. Recent advances in distributed

computing, storage systems, and machine learning have provided analytic tools and

databases that can handle the processing extremely large volumes of data. Despite

these advances, the extraction of knowledge, which can then be used for engineering

applications, e.g. the design, development, and support of engineering systems and

products, is still a major challenge for many organizations.

In order to address this issue we have developed a theoretical framework consisting

of an Integrated Meta-Representation Model (IMRM) for structuring complex knowl-

edge engineering problems, and then applied the IMRM to create representation-based

models for addressing three important issues that arise in the application of knowledge

engineering: domain knowledge modeling, machine learning model selection, and the

development of knowledge engineering software products. The structure provided by

the IMRM enables the appropriate subject matter domains and associated methods and

tools to be identified for each particular problem.

We have demonstrated this framework using three knowledge engineering problems

at a large enterprise that designs, develops, and delivers (supports) computer networking
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products and services. The developed representation-based models integrate methods

and tools from four diverse subject matter to address the three important knowledge

engineering problems. To address the domain knowledge modeling issue, described

in Chapter 4, we used engineering design methods to model domain knowledge that

allowed us to translate unstructured customer problem descriptions into engineering

failure modes that could then be used to monitor and assess the quality of a com-

puter network security device. In the service request escalation problem, described in

Chapter 5, we used of methods from statistical design of experiments in order to effi-

ciently select the machine learning model that optimized the objective of minimizing

total escalation cost. In the development of knowledge engineering software products

problem, described in Chapter 6, we used engineering design methods to develop a high-

value knowledge engineering software product to improve the productivity of engineers

extracting problem-solution pairs from customer service requests.

The IMRM should prove to be valuable to the increasing number of organizations

attempting to transform massive amounts of unstructured data and information into

useful knowledge that can be used to influence core business and technology activi-

ties, e.g. product development, customer support, and marketing. When addressing

problems involving engineering applications, e.g. product design, the desired output or

result of the knowledge engineering process is often unknown. For example, consider

the problem discussed earlier where the computer networking organization wanted to

monitor the quality of products in service. The organization knew that it wanted to use

customer service requests to monitor quality, however, the details of how quality would

be monitored were unknown.

The use of representation-based methods enabled the issues associated with this prob-

lem to be layered so that we can identify the different representations of the problem

(External, Internal, and Outer layers) and the intermediate representations for tran-

sitioning between these problem representations (Outside-In and Inside-Out layers).
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The proper layering of the complex problem to be solved then enables and facilitates

the difficult task of identifying the appropriate subject matter domains as well as the

appropriate methods and tools in these domains.

7.2 Thesis Contributions

In a seminal essay, “No Silver Bullet” [Brooks, 1987], Brooks made the argument that

complexity in software engineering problems can be organized into “essential” complex-

ity that is inherent to the problem under consideration and “accidental” complexity

that is an artifact of the tools that are available to software engineers. He goes on to as-

sert that the most of the big productivity gains in software engineering have come from

progress on the accidental complexity component through better tools (higher-level pro-

gramming languages, faster computers, etc.) and that future productivity improvements

must come from addressing the essential complexity.

We can argue that we are at a similar point for knowledge engineering as a discipline.

In the past decade the knowledge engineering tool-set has evolved, and as a result prac-

titioners have increasingly better algorithms and computer systems at their disposal.

These tools remove much of the accidental complexity of knowledge engineering by

simplifying the process of manipulating large data-sets, developing machine learning

models, and deploying software systems. However, these tools do not ease the essential

complexity involved in knowledge engineering—the cognitive burden associated with

large scale problems spanning multiple engineering and business domains. For example,

new machine learning algorithms enable us to rapidly build extremely accurate predic-

tive models from large data-sets. However, these algorithms do not help the knowledge

engineer determine the organizational context, user needs, and business and technical

objectives for the model.

The novel contribution of this work is the notion of representation-based models for
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structuring and subsequently solving complex knowledge engineering problems. The use

of representation provides a structured approach to attacking the fundamental or es-

sential complexity of knowledge engineering problems. The representation-based model

approach, resulting from applying the IMRM to a particular problem, has the following

features that address the essential complexity of knowledge engineering problems:

1. Each layer is a representation (or map) of the necessary steps in the process of

designing and developing a high-value solution to solve a particular problem. The

five layers of the IMRM are labelled as follows: External, Outside-In, Internal,

Inside-Out, and Outer. The first layer, the External, represents the initial state of

the problem under consideration; while the fifth layer, the Outer, represents the

complete solution to the problem.

2. As one progresses through the five layers of representation, the level of abstraction

first increases (External to Internal) and then decreases (Internal to Outer). By

focusing the work at the appropriate level of abstraction, the IMRM allows for a

more comprehensive approach to ensuring and maximizing the satisfaction of the

customer needs and resolving trade-offs between quality and cost.

3. The sequential and functional layering of the IMRM supports the concurrent selec-

tion of the appropriate methods and tools and their placement in the proper layer.

This enables the functional (“input-output”) integration of the selected methods

and tools, and thereby, facilitates a seamless transition between the layers.

We have demonstrated the application and implementation of the IMRM to the three

complex multi-disciplinary problems summarized in the previous section.
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7.3 Future Work

We have applied the Integrated Meta-Representational Model to three important knowl-

edge engineering problems. In the process we have shown that the representation-based

approach helps manage the complexity associated with solving multi-disciplinary prob-

lems that involve the four different key activities of engineering: design, analysis, ex-

perimentation, and manufacturing/prototyping. For each of the three problems we

focused on one of these four engineering activities. This simplification enabled us to

demonstrate the application of the IMRM to complex real-world knowledge engineering

problem within the time and resource constraints of the thesis.

Our hypothesis, based on the experience of solving the aforementioned problems, is

that the representation-based approach provided by the Integrated Meta-Representational

Model (IMRM) becomes increasingly valuable as the size and complexity of the prob-

lem increases. The major research question to be answered with future work is testing

this hypothesis using a large-scale knowledge engineering problem in which all four

engineering activities are significant.

In order to illustrate a problem involving all four engineering activities consider the

following scaled-up instance of the quality monitoring problem discussed in Chapter 4.

The associated tasks for each of the four engineering activities are as follows:

• Design: Design a high-quality monitoring and assessment knowledge engineering

software product (KESP) for the product design, development, and delivery teams

to use.

• Analysis: Perform real-time analysis of service requests for quality monitoring

and assessment.

• Experiments: Determine the optimal machine learning model for classifying

service requests and the optimal forecasting model for time-series analysis.
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• Prototyping / Manufacturing: Build and test the knowledge engineering soft-

ware product.

Since this problem is essentially a super-set of the three problems addressed in this

thesis, addressing these tasks requires methods and tools from all of the engineering

domains considered in this thesis: machine learning, time-series analysis, knowledge

engineering, statistical design of experiments, product design and development, and

software engineering. The subject of future work would therefore be: 1) the application

of the IMRM to appropriately layer the four engineering activities so that the necessary

methods and tools from the relevant engineering domains can be rationally selected,

and 2) the implementation of the resulting complete engineering representation-based

model in order to create a comprehensive solution for the product quality monitoring

and assessment problem. Addressing and resolving this problem would demonstrate that

the Integrated Meta-Representational Model is ready to address complex and large-scale

technical problems beyond the knowledge engineering problems addressed in this thesis.
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